Abstract Submitted for the APR21 Meeting of The American Physical Society

Sorting Category: D11. (E)

Exploring the Spin Structure of the Neutron by the Measurement of g_2 and d_2^1 MURCHHANA ROY, WOLFGANG KORSCH, University of Kentucky, E12-06-121 AND E12-06-110 COL-LABORATION — The experiment E12-06-121 at Jefferson Lab aims to do a precision measurement of the neutron spin structure function g₂ using the inelastic scattering of electrons over the kinematic range 0.20 $x_{Bj} < 0.95$ and $2.5 < Q^2 < 6.0 (GeV/c)^2$. The large kinematic coverage will allow for the precision determination of d₂, the third moment of the linear combination of the spin structure functions g_1 and g_2 . As one of the cleanest higher twist observables, g₂ contains information on quarkgluon correlations, and d₂ is connected to the "color polarizability" of the nucleon. The experiment was performed and successfully completed in Hall C using a longitudinally polarized 10.4 GeV electron beam and a polarized helium-3 gas target. The combination of Super High Momentum Spectrometer (SHMS) and High Momentum Spectrometer (HMS) allowed us to run the experiment for three constant Q² values over a wide range of x_{Bj} for the first time. The extraction of $d_2^n(Q^2)$ will serve as a benchmark to the predictions from Lattice QCD. An overview of the experiment and the present status of the experimental data analysis will be presented.

¹This work is partially supported by the U.S. Department of Energy Office of Nuclear Physics under Contract No. DEFG02-99ER41101.

Murchnana Roy
murchhanaroy@uky.edu
University of Kentucky

Date submitted: 07 Jan 2021 Electronic form version 1.4