Measurement of ³He Elastic Electromagnetic Form Factor Diffractive Minima Using Polarization Observables

On behalf of the E12-06-121 collaboration Michael Nycz

Measurement of ³He Elastic Electromagnetic Form Factor Diffractive Minima Using Polarization Observables

S. K. Barcus (Spokesperson),* E. McClellan,
D. W. Higinbotham (Spokesperson), B. Sawatzky, and D. Mack
Jefferson Lab, Newport News, VA 23606

S. Li (Spokesperson)

University of New Hampshire,

Durham, NH 03824

T. Averett and M. Satnik
College of William and Mary,
Williamsburg, VA 23185

F. Hauenstein

Old Dominion University, Norfolk, VA 23529

S. Širca and M. Mihovilovič

University of Ljubljana and Jozef Stefan Institute,

1000 Ljubljana, Slovenia

T. Kolar

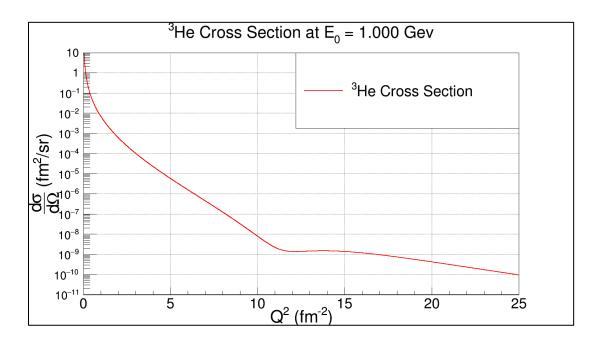
Jozef Stefan Institute,

1000 Ljubljana, Slovenia

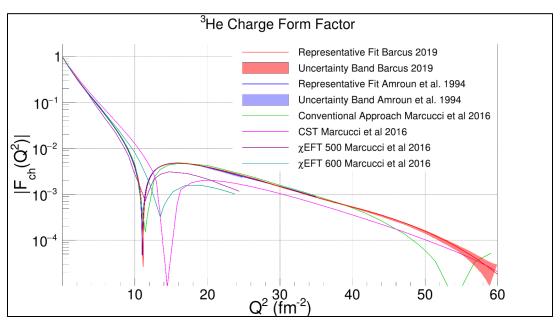
X. Zheng, M. Chen, and J. Zhang University of Virginia, Charlottesville, VA 22904

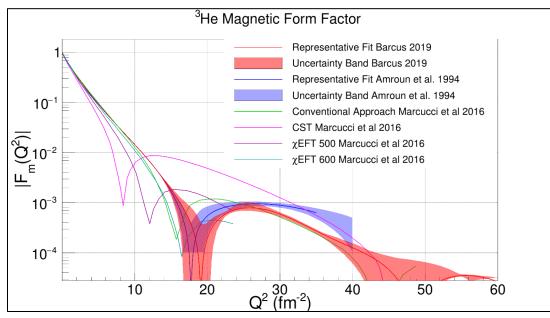
 d_2^n Collaboration

³He Elastic Scattering Form Factors


$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{exp}} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \frac{1}{1+\tau} \left[G_E^2(Q^2) + \frac{\tau}{\epsilon} G_M^2(Q^2) \right]$$

Rosenbluth Separation


$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{red}} = \left[\epsilon G_E^2(Q^2) + \tau G_M^2(Q^2)\right]$$


- G_E & G_M extracted from linear fit
 - G_E = slope
 - G_M = intercept
- Rosenbluth separations in diffractive minima are non-trivial

Fit to world data

Experimental and Theoretical Comparison

- Discrepancies in location of minima of the electric and charge form factors
- All high Q² Form Factor measurements are from unpolarized elastic scattering

Polarization Measurement

- How to disentangle these differences?
 - Double-polarization measurement
- An independent method to constrain the positions of the ³He diffractive minima
- Help to explain the differences between theory and experimental results

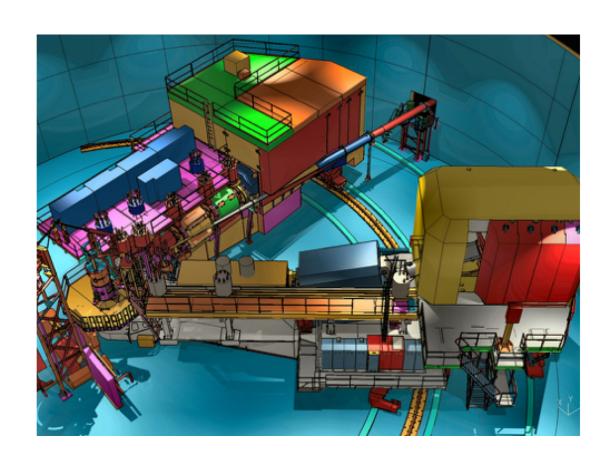
Polarized ³He target cell

Double Polarization Measurement

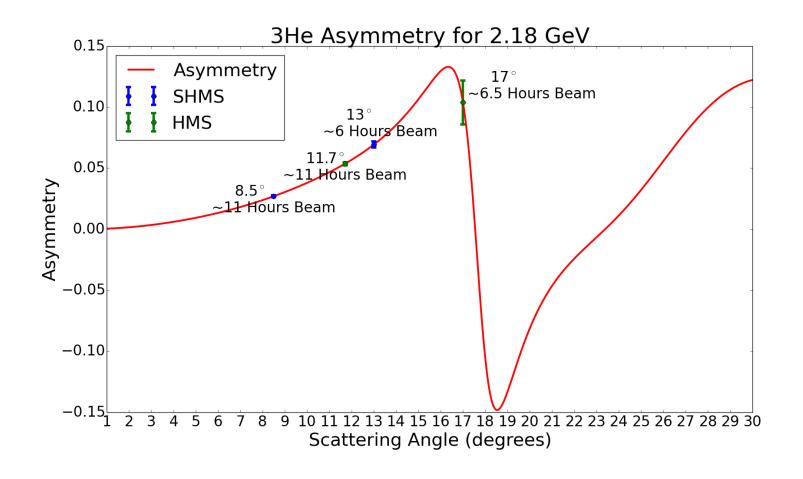
Polarized electron beam and polarized nucleon target

$$A_{phys} = \frac{-2\sqrt{\tau(1+\tau)}\tan\left(\frac{\theta}{2}\right)}{G_E^2 + \frac{\tau}{\epsilon}G_M^2} \left[\sin(\theta^*)\cos(\varphi^*)G_E \ G_M + \sqrt{\tau\left[1 + (1+\tau)\tan^2\left(\frac{\theta}{2}\right)\right]}\cos(\theta^*)G_M^2\right]$$

$$A_{meas} = \frac{N^{+} - N^{-}}{N^{+} + N^{-}}$$
$$A_{meas} = P_{t} P_{l} A_{phys}$$


Where

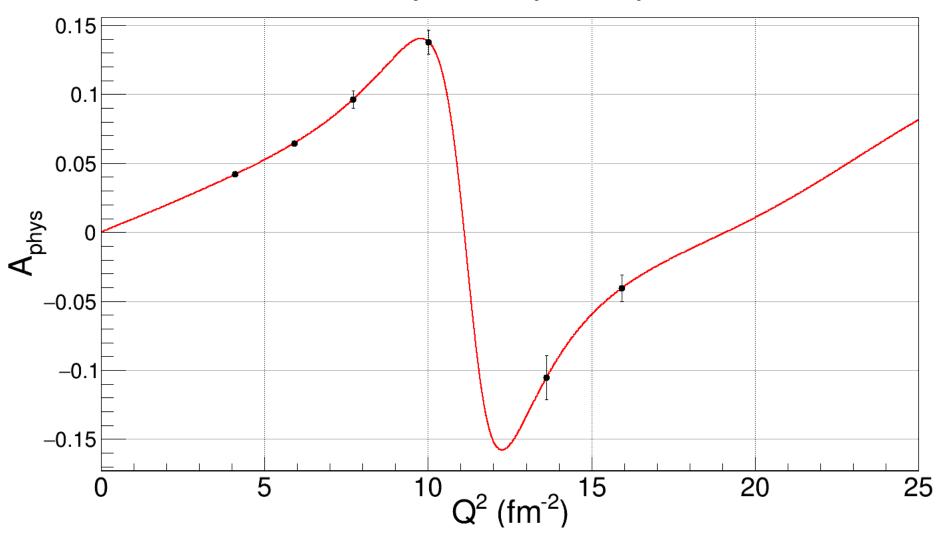
 $\theta^*\&\ \varphi^*$ - polar & azimuthal angles of polarization vector of target $P_t\&P_l$ - Polarization of target and electron beam


• Zero crossings of asymmetry correspond to diffractive minima

Experiment E12-06-121A

- ullet Ran parasitically in Hall C during d_2^n
 - Configured with d_2^n planned 1st pass systematic measurements
- Target cells
 - Polarized ³He cell
 - Reference ³He cell
- Beam energy: 2.2 GeV
- Beam current: 30 μ A (glass cells)
- Detect elastically scattered electrons independently in both HMS and SHMS

Measured Kinematic Points


Summary

- Experiment E12-06-121A ran parasitically at the end of the $\,d_2^n$ experiment during the Fall* 2020 run period
- First high Q² asymmetry points measured
- Analysis status
 - First Pass calibrations already preformed by A_1^n and d_2^n students!
 - Beginning stages of simulation
- Thank you to the Hall C Scientific and Technical staff as well as shift workers for their support!

Kinematics

Spectrometer	θ [°]	P ₀ [GeV]	Q² [fm ⁻²]
SHMS	8.5	2.12	2.60
SHMS	13.0	2.12	6.10
HMS	11.7	2.08	4.88
HMS	17.0	2.08	10.25

Polarized ³He Physical Asymmetry at 2.216 GeV

