Machine Learning Approaches for ALERT Track Reconstruction at Jefferson Lab

Mathieu Ouillon Mississippi State University For the CLAS Collaboration

Abstract

Understanding how the structure of bound nucleons is modified within the nuclear medium remains a central challenge in hadronic physics. Deeply Virtual Compton Scattering (DVCS) offers a powerful probe of the partonic structure of light nuclei, providing access to their three-dimensional distributions via Generalized Parton Distributions (GPDs) and enabling studies of associated in-medium stimulated effects.

The recently completed CLAS12 experiment at Jefferson Lab employed the newly built A Low Energy Recoil Tracker (ALERT) detector to study tagged DVCS by impinging an 11 GeV polarized electron beam on ⁴He or ²H. The ALERT detector is comprised of a hyperbolic drift chamber (AHDC) and a time-of-flight (ATOF) array to provide an effective separation of low-momentum nuclear-recoil fragments, including ¹H, ²H, ³H, ³He, and ⁴He, down to 70 MeV/c across a broad kinematic range.

Recent advances in artificial intelligence (AI), particularly in model architectures, have demonstrated strong performance in high-rate experiments with significant background noise, such as the AHDC case. To this end, AI-based techniques have been developed to enhance AHDC track-finding efficiency, purity, and processing speed relative to conventional algorithms, as well as to identify recoil fragments and optimize matching between AHDC tracks and ATOF hits. In this talk, I will present a highlight of the ALERT physics program and provide an update on the ongoing development and optimization of AI-assisted track reconstruction and particle identification for both simulated and real data.

This work is supported in part by the U.S. DOE award #: DE-FG02-07ER41528.