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Search for a new gauge boson in the A′ Experiment (APEX)

S. Abrahamyan,1 Z. Ahmed,2 K. Allada,3 D. Anez,4 T. Averett,5 A. Barbieri,6 K. Bartlett,7 J. Beacham,8 J. Bono,9

J.R. Boyce,10 P. Brindza,10 A. Camsonne,10 K. Cranmer,8 M.M. Dalton,6 C.W. de Jager,10, 6 J. Donaghy,7 R. Essig,11, ∗

C. Field,11 E. Folts,10 A. Gasparian,12 N. Goeckner-Wald,13 J. Gomez,10 M. Graham,11 J.-O. Hansen,10 D.W. Higinbotham,10

T. Holmstrom,14 J. Huang,15 S. Iqbal,16 J. Jaros,11 E. Jensen,5 A. Kelleher,15 M. Khandaker,17, 10 J.J. LeRose,10 R. Lindgren,6

N. Liyanage,6 E. Long,18 J. Mammei,19 P. Markowitz,9 T. Maruyama,11 V. Maxwell,9 S. Mayilyan,1 J. McDonald,11

R. Michaels,10 K. Moffeit,11 V. Nelyubin,6 A. Odian,11 M. Oriunno,11 R. Partridge,11 M. Paolone,20 E. Piasetzky,21

I. Pomerantz,21 Y. Qiang,10 S. Riordan,19 Y. Roblin,10 B. Sawatzky,10 P. Schuster,11, 22, † J. Segal,10 L. Selvy,18 A. Shahinyan,1

R. Subedi,23 V. Sulkosky,15 S. Stepanyan,10 N. Toro,24, 22, ‡ D. Walz,11 B. Wojtsekhowski,10, § and J. Zhang10

1Yerevan Physics Institute, Yerevan 375036, Armenia
2Syracuse University, Syracuse, New York 13244

3University of Kentucky, Lexington, Kentucky 40506
4Saint Mary’s University, Halifax, NS B3H 3C3, Canada

5College of William and Mary, Williamsburg, Virginia 23187
6University of Virginia, Charlottesville, Virginia 22903

7University of New Hampshire, Durham, New Hampshire 03824
8New York University, New York, New York 10012

9Florida International University, Miami, Florida 33199
10Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606

11SLAC National Accelerator Laboratory, Menlo Park, California 94025
12North Carolina Agricultural and Technical State University, Greensboro, North Carolina 27411

13Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
14Longwood University, Farmville, Virginia 23909

15Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
16California State University at Los Angeles, Los Angeles, California 90032

17Norfolk State University, Norfolk, Virginia 23504
18Kent State University, Kent, Ohio 44242

19University of Massachusetts, Amherst, Massachusetts 01003
20University of South Carolina, Columbia, South Carolina 29225

21Tel Aviv University, Tel Aviv, 69978 Israel
22Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5, Canada

23George Washington University, Washington DC 20052
24Stanford University, Menlo Park, California 94025

(Dated: August 11, 2011)

We present a search at Jefferson Laboratory for new forces mediated by sub-GeV vector bosons with weak
coupling α′ to electrons. Such a particle A′ can be produced in electron-nucleus fixed-target scattering and
then decay to an e+e− pair, producing a narrow resonance in the QED trident spectrum. Using APEX test run
data, we searched in the mass range 175–250 MeV, found no evidence for an A′ → e+e− reaction, and set an
upper limit of α′/α ' 10−6. Our findings demonstrate that fixed-target searches can explore a new, wide, and
important range of masses and couplings for sub-GeV forces.

PACS numbers: 95.30.Cq, 14.70.Pw, 25.30.Rw, 95.35.+d

The strong, weak, and electromagnetic forces are mediated
by vector bosons of the Standard Model. New forces could
have escaped detection only if their mediators are either heav-
ier than O(TeV) or quite weakly coupled. The latter possibil-
ity can be tested by precision colliding-beam and fixed-target
experiments. This letter presents the results of a search for
sub-GeV mediators of weakly coupled new forces in a test
run for the A′ Experiment (APEX), which was proposed in
[1] based on the general concepts presented in [2].

A new abelian gauge boson, A′, can acquire a small cou-
pling to charged particles if it mixes kinetically with the pho-
ton [3]. Indeed, quantum loops of heavy particles with elec-
tric and U(1)′ charges can generate kinetic mixing and an ef-

fective interaction εeA′
µJµ

EM of the A′ to the electromagnetic
current Jµ

EM , suppressed relative to the electron charge e by
ε ∼ 10−2 − 10−6 [4]. This mechanism motivates the search
for very weakly coupled gauge bosons. Anomalies related to
dark matter [5] and to the anomalous magnetic moment of
the muon [6] have motivated interest in the possibility of an
A′ with MeV- to GeV-scale mass. Gauge bosons in the same
mass range arise in several theoretical proposals [7], and their
couplings to charged matter, α′ ≡ ε2α (α = e2/4π), are re-
markably weakly constrained [2].

The simplest scenario, in which the A′ decays directly to
ordinary matter, can be tested in electron and proton fixed-
target experiments [2, 8, 9] and at e+e− and hadron collid-
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FIG. 1. Top: (a) A′ production from radiation off an incoming e−

beam incident on a target consisting of nuclei of atomic number Z.
APEX is sensitive to A′ decays to e+e− pairs, although decays to
µ+µ− pairs are possible for A′ masses mA′ > 2mµ. Bottom: QED
trident backgrounds: (b) radiative tridents and (c) Bethe-Heitler tri-
dents.

ers [4, 7, 10, 11, 12]. Electron fixed-target experiments are
uniquely suited to probing the sub-GeV mass range because of
their high luminosity, large A′ production cross section, and
favorable kinematics. Electrons scattering off target nuclei
can radiate an A′, which then decays to e+e−, see Fig. 1. The
A′ would then appear as a narrow resonance in the e+e− in-
variant mass spectrum, over the large background from quan-
tum electrodynamics (QED) trident processes. APEX is op-
timized to search for such a resonance using Jefferson Labo-
ratory’s Continuous Electron Beam Accelerator Facility and
High Resolution Spectrometers (HRS) in Hall A [13].

The full APEX experiment proposes to probe couplings
α′/α & 10−7 and masses mA′ ∼ 50 − 550 MeV, a consid-
erable improvement in cross section sensitivity over previous
experiments in a theoretically interesting region of parame-
ter space. Other electron fixed-target experiments are planned
at Jefferson Laboratory, including the Heavy Photon Search
(HPS) [14] and DarkLight [8] experiments; at MAMI [15];
and at DESY (the HIdden Photon Search (HIPS) [16]).

We present here the results of a test run for APEX that took
place at Jefferson Laboratory in July 2010. The layout of the
experiment is shown in Fig. 2. The distinctive kinematics of
A′ production motivates the choice of configuration. The A′

carries a large fraction of the incident beam energy, Eb, is
produced at angles ∼ (mA′/Eb)3/2 � 1, and decays to an
e+e− pair with a typical angle of mA′/Eb. A symmetric con-
figuration with the e− and e+ each carrying nearly half the
beam energy mitigates QED background while maintaining
high signal efficiency.

The test run used a 2.260 ± 0.002 GeV electron beam
with an intensity up to 150 µA incident on a tantalum foil
of thickness 22 mg/cm2. The HRSs’ central momenta were
'1.131 GeV with a momentum acceptance of±4.5%. Dipole
septum magnets between the target and the HRS aperture al-
low the detection of e− and e+ at angles of 5◦ relative to the
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FIG. 2. The layout of the APEX test run. An electron beam (left-to-
right) is incident on a thin tantalum foil target. Two septum magnets
of opposite polarity deflect charged particles to larger angles into
two vertical-bend high resolution spectrometers (HRS) set up to se-
lect electrons and positrons, each carrying close to half the incoming
beam energy. The HRSs contain detectors to accurately measure the
momentum, direction, and identity of the particles. Insertable sieve
slit plates located in front of the septum magnets were used for cali-
bration of the spectrometer magnetic optics.

incident beam. Collimators present during the test run reduced
the solid angle acceptance of each spectrometer from a nomi-
nal 4.3 msr to ' 2.8 (2.9) msr for the left (right) HRS.

The two spectrometers are equipped with similar detector
packages. Two vertical drift chambers, each with two orthog-
onal tracking planes, provide reconstruction of particle trajec-
tories. A segmented timing hodoscope and a gas Cherenkov
counter (for e+ identification) are used in the trigger. A two-
layer lead glass calorimeter provides further offline particle
identification. A single-paddle scintillator counter is used for
timing alignment.

Data were collected with several triggers: the single-arm
triggers produced by the hodoscope in either arm, a double co-
incidence trigger produced by a 40-ns wide overlap between
the hodoscope signals from the two arms, and a triple coinci-
dence trigger consisting of the double coincidence signal and
a gas Cherenkov signal in the positron (right) arm. Single-arm
trigger event samples are used for optics and acceptance cali-
bration, described below. The double coincidence event sam-
ple, which is dominated by accidental e−π+ coincidences, is
used to check the angular and momentum acceptance of the
spectrometers. These e−π+ coincidences are largely rejected
in the triple coincidence event sample by the requirement of a
gas Cherenkov signal in the positron arm.

The reconstruction of e+ and e− trajectories at the target
was calibrated using the sieve slit method, see [13, 17]. The
sieve slits — removable tungsten plates with a grid of holes
drilled through at known positions — are inserted between
the target and the septum magnet during the calibration runs.
In this configuration, data were taken with a 1.131 GeV and a
2.262 GeV incident electron beam. Using the reconstructed
track positions and angles as measured in the vertical drift
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chambers, and the spectrometer’s optical transfer matrix, the
positions at the sieve slit were calculated. The parameters
of the optical transfer matrix are then optimized to produce
the best possible overlap with the sieve holes positions, and
this corrected matrix is applied to event reconstruction. Only
events within calibrated acceptance are used in the final anal-
ysis.

The final event sample is selected from the coincidence
sample defined above by imposing a 12.5-ns time window
between the electron arm trigger and the positron arm gas
Cherenkov signals (no off-line corrections were applied), re-
quiring good quality tracks in the vertical drift chambers
of both arms, and the acceptance selection described above.
Lastly, we demand that the sum of e+ and e− energies not
exceed the beam-energy threshold for true coincidence events
of 2.261 GeV, which reduces accidental coincidences. This
final sample of 770,500 events consists almost entirely of true
e+e− coincidence events with only 0.9% contamination by
meson backgrounds, and 7.4% accidental e+e− coincidence
events.

The experimental data were compared with a calculation
of the leading order QED trident process using MadGraph
and MadEvent [18]. MadEvent was modified to account for
nucleus-electron kinematics and to use the nuclear elastic and
inelastic form factors in [19]. The invariant mass spectrum
of the calculated coincident event sample overall normalized
to the data is shown in Fig. 3. Overall trident rates from our
calculations for the test run configuration, accounting for ac-
ceptance, agree within a few percent with data. Likewise, the
differential momentum and angular distributions agree within
5 − 10%. The remaining discrepancies are consistent with
uncertainties in the multi-dimentional momentum-angular ac-
ceptance and detector efficiency effects not included in our
comparison.

The sensitivity to A′ depends critically on precise recon-
struction of the invariant mass of e+e− pairs. Due to the ex-
cellent HRS relative momentum resolution of O(10−4), the
mass resolution is dominated by three contributions to the an-
gular resolution: scattering of the e+e− inside the target, track
measurement errors by the HRS detectors, and imperfections
in the magnetic optics reconstruction matrix. Multiple scatter-
ing in the target contributes 0.37 mrad to the vertical and hor-
izontal angular resolutions for each particle. Track measure-
ment uncertainties contribute typically 0.33 (1.85) mrad to the
horizontal (vertical) angular resolution in the left HRS and
0.43 (1.77) in the right HRS. Magnetic optics imperfections in
both HRS were found to contribute typically 0.10 (0.22) mrad
to the horizontal (vertical) angular resolution. Because cali-
bration of the magnetic optics was performed using only e−,
and not e+, there is a possibility of additional aberrations in
the positron arm. An upper limit for possible aberrations of
0.5 mrad was obtained from angular correlations in H(e, e′p)
experiments with the HRS and the calculations of the septum
magnetic field. Accounting for these effects, we determine
the combined mass resolution (rms) to be between 0.85 and
1.11 MeV, depending on the invariant mass. Finally, the un-
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FIG. 3. Upper panel: The invariant mass spectrum of e+e− pair
events in the final event sample (black points, with error bars), acci-
dental e+e− coincidence events (blue short-dash line), and the QED
calculation of the trident background added to the accidental event
sample (red long-dash line). Lower panel: the bin-by-bin residuals
with respect to a 10-parameter fit to the global distribution (for illus-
tration only, not used in the analysis).

certainty in the absolute angle between the two sieve slits in-
troduces a 1% uncertainty in the absolute mass scale but does
not affect the mass resolution.

The starting point for the A′ → e+e− search is the invari-
ant mass distribution of the coincident event sample, shown
in black in Fig. 3. Also shown is the accidental e+e− coin-
cidence event sample in blue, and the QED calculation of the
trident background added to the accidental sample in red. For
illustration, we show the bin-by-bin residuals with respect to a
10-parameter fit to the global distribution, although we do not
use this in the analysis. The analysis code, described below,
was tested and optimized on our simulated data and on a 10%
sample of the experimental data to avoid possible bias.

We found that a linear sideband analysis is not tenable in
light of the high statistical sensitivity of the experiment and
the appreciable curvature of the invariant mass distribution; it
suffers from O(1) systematic pulls, which can produce false
positive signals or overstated sensitivity. Instead, a polyno-
mial background model plus a Gaussian signal of S events
(with mass-dependent width corresponding to the mass reso-
lution presented above) is fit to a window bracketing each can-
didate A′ mass. The uncertainty in the polynomial coefficients
incorporates the systematic uncertainty in the shape of the
background model. Based on extensive simulated-experiment
studies, a 7th-order polynomial fit over a 30.5 MeV window
was found to achieve near-minimum uncertainty while main-
taining a potential bias below 0.1 standard deviations across
the mass spectrum. A symmetric window is used, except for
candidate masses within 15 MeV of the upper or lower bound-
aries, for which a window of equal size touching the boundary
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FIG. 4. Top: Background-only model p-value versus A′ mass.
Middle: Shaded gray region denotes 90% confidence limit, 50%
power-constrained allowed region [20]. 90% confidence upper limit
is shown in solid blue (dotted blue) when it is above (below) the ex-
pected limit (gray dashed). Red solid line denotes the best-fit for the
number of signal events S. For comparison, dot-dashed line indi-
cates contribution of statistical uncertainty to expected sensitivity, if
background shape were known exactly. Bottom: 90% confidence,
50% power-constrained, and expected limits as above, here quoted
in terms of ratio of signal strength upper-limit to background in a
1-MeV window around each A′ mass hypothesis.

is used. A binned profile likelihood ratio (PLR) is computed
as a function of signal strength S at the candidate mass, using
0.05 MeV bins. The PLR is used to derive the local prob-
ability (p-value) at S = 0 (i.e. the probability of a larger
PLR arising from statistical fluctuations in the background-
only model) and a 90%-confidence upper limit on the sig-
nal. We define the sensitivity of the search in terms of a 50%
power-constraint [20], which means we do not regard a value
of S as excluded if it falls below the expected limit. This pro-
cedure is repeated in steps of 0.25 MeV. A global p-value,
corrected for the “look-elsewhere effect”, (the fact that an ex-
cess of events anywhere in the range can mimic a signal), is
derived from the lowest local p-value observed over the full
mass range, and calibrated using simulated experiments.

We find no evidence of an A′ signal. The p-value for the
background model and upper bound on the absolute yield
of A′ → e+e− signal events (consistent with the data and
background model) are shown in Fig. 4. The invariant-mass-
dependent limit is ' 200 − 1000 signal events at 90% confi-
dence. The most significant excess, at 224.5 MeV, has a local
p-value of 0.6%; the associated global p-value is 40% (i.e. in
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FIG. 5. The 90% confidence upper limit on α′/α versus A′ mass
for the APEX test run (solid blue). Shown are existing 90% confi-
dence level limits from the muon anomalous magnetic moment aµ

(fine hatched) [6], KLOE (solid gray) [12], the result reported by
Mainz (solid green) [15], and an estimate using a BaBar result (wide
hatched) [2, 10]. Between the red line and fine hatched region, the
A′ can explain the observed discrepancy between the calculated and
measured muon anomalous magnetic moment [6] at 90% confidence
level. The full APEX experiment will roughly cover the entire area
of the plot.

the absence of a signal, 40% of prepared experiments would
observe a more significant effect due to fluctuations).

To translate the limit on signal events into an upper limit on
the coupling α′ with minimal systematic errors from accep-
tance and trigger efficiencies, we use a ratio method, normal-
izing A′ production to the measured QED trident rate. We dis-
tinguish between three components of the QED trident back-
ground: radiative tridents Fig. 1 (b), Bethe-Heitler tridents
Fig. 1 (c), and their interference diagrams (not shown). The
A′ signal and radiative trident fully differential cross sections
are simply related [2], and the ratio f of the radiative-only
cross section to the full trident cross section can be reliably
computed in Monte Carlo: f varies linearly from 0.21 to 0.25
across the APEX mass range, with a systematic uncertainty of
0.01, which dominates over Monte Carlo statistics and pos-
sible next-to-leading order QED effects. The 50% power-
constrained limit on signal yield Smax and trident background
yield B∆m in a mass window ∆m determines an upper limit
on α′/α,(

α′

α

)
max

=
(

Smax / mA′

f ·B∆m / ∆m

)
×

(
2 Neff α

3 π

)
,

where Neff counts the number of available decay channels
(Neff = 1 for mA′ < 2mµ, and increases to ' 1.6 at
mA′ ' 250 MeV). The resulting limit, accounting in addi-
tion for contamination of the background by accidentals, is
shown in Fig. 5.
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In summary, the APEX test run data showed no significant
signal of A′ → e+e− electro-production in the mass range
175–250 MeV. We established an upper limit of α′/α '
10−6 at 90% confidence. All aspects of the full APEX exper-
iment outlined in [1] have been demonstrated to work. The
full experiment plans to run at several beam energies, have
enhanced mass coverage from a 50-cm long multi-foil target,
and acquire ∼ 200 times more data than this test run, extend-
ing our knowledge of sub-GeV force.
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