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Abstract

A hope to consider some theoretical concerns and experimental practicality.

1 Beam Alignment

Question: Should the target field be aligned with the q-vector or with the incoming
beam?

Answer : The canonical direction of the quantization axis for the initial deuteron
state is the incoming virtual photon. It is possible to allow for arbitrary directions
of the quantization axis with the use of general rotations, however one must remain
consistent when extracting observables. This means that one can align the beam
along the target field but must then rotate back to the quantization axis to look at
observables. Jaffe commonly uses the same spin quantization axis for both the target
and the virtual photon. Nevertheless, it is the virtual photon target cross section or
asymmetry that we are interested in measuring. [1], [2].

2 Systematics of σdiff

Question: Is the difference in cross section method better for extracting b1?
Answer : Considering the difference method, [3], we obtain the simplified relation

between b1 and the difference in counts,

KxPzzb1 =
∆N

QAs

. (1)

Recall from [3], that Eq. 5 comes from a simplification of,

∆N = QuAuLuσu −QpApLpσp, (2)

using Qp = Qu(1 − dQ) for Q charge and similarly for acceptance A, and length l
where dX is the residual measured difference in two. Recall that the configuration of
this experimental setup depends on our ability to reduce these differences in the two
cups. We end up with,

δ∆N = QuAuLu(σu − σp(1− dQ)(1− dA)(1− dl)), (3)
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δ∆N = Nu −Np(1− dQ)(1− dA)(1− dl), (4)

in which case we want ∆N ≫ δ∆N so we need to minimize the uncertainty,

δ∆N =

√

√

√

√

δN2
d + δN2

b

(Nd −Nb)2
N2 + δN2

u + (ξδNp)2 + (Npδξ)2 (5)

where Nd represent the number of counts observed from the D-state, and Nb

number of counts from the S-state also including other nuclear effects and all con-
tamination not included in the observable that we are measuring. This effectively give
an uncertainty associated with the probability of events we expect to detect (more
about this uncertainty in Section 3). Nu is the unpolarized counts and Np is the
polarized counts. The ξ represents the limit in ability to match luminosity in each
cup. In the notation,

ξ = (1− dQ)(1− dA)(1− dpf )(1− dl), (6)

where, dpf , the packing fraction is also included. The leading terms in the uncer-
tainty in ξ are,

δξ

ξ
=

√

√

√

√

(

δdQ

dQ

)2

+

(

δdA

dA

)2

. (7)

Notice that dQ and dA are systematic components almost purely driven by Monte
Carlo. For this configuration dQ is the limitation in the Monte Carlo to resale the
second cup to that the count are equivalent under Azz = 0. Naturally we need dQ to
be very small but our understanding of this renormalization has no systematic check
to real data, this means δdQ can be on the same order as this very small quantity
dQ. This would imply that δξ ∼ ξ ∼ 1 leading to,

δ∆N =
√

(Npδξ)2, (8)

which mean that the uncertainty can be on the same order a what is being mea-
sured for small ∆N . This rough run through neglects many contribution to the nor-
malization uncertainty in the difference including the polarization uncertainty seen
in δNp.

3 Systematics of Azz

To consider the asymmetry method we use,

d2σp

dxdQ2
≈

d2σ

dxdQ2
[1 +

1

2
PzzAzz]. (9)

The number of evens are defined by,

N = σu
∫

∆t
dtǫ(t)L(t) (10)

2



where ∆t is the integrated time for that period of data at a give tensor polarization
(most likely a run), ǫ(t) is the dead-time, and L(t) luminosity as a function of time.
leading to,

N1 = σuL1A1(1 +
1

2
|P 1

zz|Azz) (11)

N0 = σuL0A0(1−
1

2
|P 0

zz|Azz) (12)

for m = +1,−1 → N1 and m = 0 → N0. The desired asymmetry is,

Azz =
2N1 − 2N0

2N1 +N0
. (13)

Using previous results and notation of [4] if differences in acceptances and luminosity
are ignored,

Ameas
zz =

Azz

2
(P+

zz + P−

zz)

2 + Azz

2
(P+

zz − P−

zz)
. (14)

But looking at uncertainty inherent in Azz we need all terms such that,

δN0

N0
=

√

√

√

√

(

δǫ0

ǫ0

)2

+

(

δL0

L0

)2

+

(

δA0

A0

)2

, (15)

simlarly for N1 giving,

a =
2

(2N1 +N0)(2N1 +N0)
−

2Azz

2N1 +N0
, (16)

b =
2

(2N1 +N0)(2N1 +N0)
+

Azz

2N1 +N0
, (17)

leading to,

δAN
zz =

√

(aδN1)2 + (bδN0)2 ∼ 2× 10−3. (18)

The estimate for δAzz comes to 2 × 10−3 optimistically. This value uses simi-
lar systematic components from past Jlab experiments [5]. For the real measured
contributions we want to minimize,

δAmeas
zz =

√

(δAN
zz)

2 + (δAoptics
zz )2 + (δANRM

zz )2 + (ADet
zz )2 + (δAd

zz)
2 ∼ 2.3×10−3. (19)

Table 1 lists all the additional components of systematic uncertainty. The er-
ror δAoptics is the uncertainty in the asymmetry based on limitations in optics. The
δANRM is the uncertainty in the asymmetry from polarization measurement error
combined with the uncertainty specific to NRM measurements of the deuteron. The
δAe− is the uncertainty in the asymmetry from electron selection and identification.
The δArad is the expected size of contribution in the asymmetry from radiative cor-
rections. The δADet is the uncertainty in the asymmetry from detector efficiency
and instrumental errors. The δAd is the uncertainty in the asymmetry from miss-
identification of d-state events. The value used in the calculation in Eq. 19 is under
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(#) source error (%)
(1) δAoptics 5× 10−4
(2) δANRM 1× 10−4

(3) δAe− 1× 10−5
(5) δArad 1× 10−5
(7) δADet 1× 10−3
(8) δAd 1× 10−4

Table 1: The systematic error estimates of the tensor asymmetry.

the assumption of low x. The back ground events Nb can not be properly expressed in
the helicity amplitude relationship to Azz. This value naturally has a x dependence
and is likely much larger as the coherent length λ, [6], gets smaller and nuclear effects
from n-p s-state become more dominant. To estimate the change in δAd with respect
to x a very crude approximation gives,

δAd
zz ∼ Azz

√

√

√

√

δN2
d + δN2

b

(Nd −Nb)
∼

AN
zz

2

δN

N

1.7

λ
. (20)

Here the 1.7 fm is the limit set for inter-nucleon separation in the nucleus. This
implies a contribution to the uncertainty of 2.4 × 10−3 at x = 0.3 which is likely a
very conservative number considering the unknown nature of these effects. This would
bring the total to 3.3× 10−3. Multiple scattering, double scattering, shadowing, and
quadrapole admixture, can all be understood to some degree once the measurement is
taken. All effects that lead to enhancement decrease at around the same 1.7 fm limit.
This is not true for any event candidates that can not be represented in the asymmetry
Azz from the γ∗-deuteron amplitudes, this contributes a growing uncertainty as x
increases.

4 Theoretical Model of Azz

Question : Do we have a prediction for b1 and Azz without parameterization?
Answer: The answer discussed at the top in Section 1 implies that the last Hermes

point at < x >= 0.452 is unreliable, this means that there are only two points that
over lab with our desired kinematics both of which are consistent with zero within the
Hermes error bars. If there is good theoretical basis to expect a measurable Azz the
experimental motivation is evident. If we are limited by experimental resolution and
uncertainty at high x then it is critical to overlap with Hermes at lower x and corre-
sponding Q2 in order to motivate experiment. It is possible to use the predictions in
[6] and [7] to get an idea of what Azz might look like without the bias of parameteriza-
tion from the Hermes data. In [7] diffractive nuclear shadowing of the nuclear excess
of pions on the deuteron spin alignment leads to a substantial tensor polarization of
sea partons in the deuteron which has the relation A(x,Q2) = b2(x,Q

2)/F d
2 (x,Q

2).
Using [7] description for the double scattering contribution to b2 and relation b1 = b2x
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it is possible to express the prediction for Q2 = 4 GeV2. The result is shown if Fig. 1,
here it is clear that the value of the asymmetry that we are measuring is on the same
order at our combined systematic and statistical uncertainty. This is a critical point
because there are no other unparameterized prediction for Azz that we can reach give
our kinematic accessibility and experimental uncertainty, this is by far the largest
prediction for Azz.
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Figure 1: Prediction for Azz using numerical values from [6] and [7]. The dashed line
represents Azz at Q2 = 4 GeV2 and the solid line at Q2 = 10 GeV2.
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