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Abstract

The leading twist tensor structure function of spin-1 hadrons, b; provides a unique
tool to study partonic effects, while also being sensitive to coherent nuclear
properties in the simplest nuclear system. The first measurement of b; taken at
HERMES revealed a crossover to an anomalously large negative value in the 0.2 < x <
0.5 region, albeit with relative large uncertainty, where all conventional models
predicted a vanishing b;. There is no known conventional nuclear mechanism that
can explain the large negative value of b; found at large x by HERMES. However, a
recent calculation by G. Miller demonstrates that this data might be understood in
terms of hidden color due to a small six-quark configuration contribution to the
nuclear wave function.

Jefferson Lab has approved an experiment to measure b; with greatly improved
uncertainty using a tensor-polarized solid ND, target. Such a target would also
provide access to tensor observables at higher x that can probe the short range
repulsive core of the nucleon-nucleon potential and the ratio of the S- and D-states
through a measurement of the tensor asymmetry A4,,.

Background

The deuteron is the simplest composite nuclear system, which makes understanding
it imperative for understanding bound systems in QCD. Being a spin-1 particle, it can
be vector (m; = £1) or tensor (m; = 0) polarized!!.

The hadronic tensor of electron scattering from the deuteron reveals four structure
functions (b1, b,, bz, and b,) that cannot be accessed using a vector polarized

target!2l.
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The leading twist tensor structure functions are expected to have a Callan-Gross
relation, where b, = xb;. The b, probes the momentum fraction of quarks while the
whole nucleus is in the m; = £1 or m; = 0 states,
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Probing the tensor structure of the deuteron through inclusive DIS electron
scattering D(e,e’) accesses gross nuclear effects at the partonic level. If the deuteron
is described without nuclear effects, b; disappears. Even including D-state admixture,
all conventional nuclear models predict by to be vanishingly small.
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Tensor Polarized Targets

Motivation

Conventional models are plotted below, as well as the first measurement of b; from
HERMESB! alongside their kinematic coverage.
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The HERMES measurement found an
unexpected large negative value of b, at

x = 0.46 that cannot be explained by ..
conventional models. S. Kumano built a &~
fit of the HERMES data that modeled
the quark-antiquark distributions in the I
deuteron and found that he could - N T -7
better recreate the HERMES data by I P
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G. Miller®! looked at the anomalous
HERMES point through a hidden-color

0.012 model. Conventional pionic contributions
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dominate in the x < 0.3 range. Around
x~0.1, pionic effects are negligible, but
the addition of hidden-color six-quark
states causes b, to cross zero and creates a
negative dip on the order of the HERMES
data. In addition, the negative structure of
six-quark, hidden color effects are able to
compensate for the entirely positive pion
effects such that the Close-Kumano sum
rule (| dxb;(x) = 0) can be valid.
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As discussed, the x = 0.46 HERMES result is intriguing in that it can only be
explained with nonconventional models, but it is unfortunately only 20 from 0. Thus,
there is ample room for improvement. Such a measurement (E12-13-011) was
conditionally approved by the JLab PAC40.
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In addition, each of the b; measurements are extracted
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and virtual nucleon calculationsl®], making it an 2 5y L | ot |
important quantity to determine for understanding LE ’ —
tensor effects such as the dominance of pn correlations ) R 2 e
in nuclei. The recent JLAB letter of intent LOI12-14-002 - _ N ‘\\"\*.;\,\

explores the potential to measure 4,, in the x >1 = »E N
region from 0.3 < 0% < 1.5 GeV? utilizing identical :’zég‘ﬁ SO,
equipment to the E12-13-011 b; measurement. CE) Ll ] | i |
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E. Long, on behalf of the b, collaboration

E12-13-011 Experiment

The Cl-approved Jefferson Lab E12-13-011 experiment will measure the deuteron
tensor structure function b; from DIS D(e,e’) scattering in the 0.1 < x < 0.6 range. It
will take place in Hall C and utilize the HMS and SHMS spectrometers, luminosity
monitors, and the Jlab/UVA solid DNP polarized target.
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Utilizing a 115nA unpolarized beam, the kinematic range of the experiment will
extend from 0.5 < Q? < 5.0 GeV2.
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Detector | « Q? |44 E,. 0 0, Rates | Time
o (GeV?) | (GeV) | (GeV) (deg.) | (kHz) | (Days)
SHMS | 0.15 1.21 2.78 6.70 7.35 | 11.13 | 1.66 6
SHMS | 0.30 2.00 2.36 7.45 8.96 | 17.66 | 0.79 9
SHMS | 0.45 2.58 2.00 7.96 9.85 | 23.31 | 0.38 15
HMS 0.55 3.81 2.00 7.31 22.26 | 0.11 30
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The condition given by the PAC is to obtain an in-beam tensor polarization of at least
30%. Target development is in progress at both the UVA and UNH DNP target labs.
Understanding tensor polarization is a top goal of these groups, both to meet the
PAC condition and because target polarimetry is the
leading systematic uncertainty.

Source Relative Uncertainty e} i —— ErmcEaAToR
Polarimetry 8.0% [® LI/ RRRRRRRRRRRR
Dilution/Packing Fraction 4.0% — N
Radiative Corrections 1.5% - NIy - e
Charge Determination 1.0% | N
Detector Resolution and Efficiency 1.0% / 'y N
Total 9.2% | pd v& |
: . 2 N
The bq structure function is extracted from the observable A,, = 7 (N ot 1)
ZZ Unpol
3 : .
by by = — §F1Azz- The predicted uncertainties for both are shown below.
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