<html>
  <head>
    <meta content="text/html; charset=windows-1252"
      http-equiv="Content-Type">
  </head>
  <body text="#000000" bgcolor="#FFFFFF">
    Hi Misha,<br>
    thanks, you're right, there is a 10^3 label lost under the color
    scale!<br>
    <br>
    With Luca we looked further at this effect: the attached plot is the
    amplitude (mV) vs charge (phe) measured for MPPC 25 um. <br>
    The amplifier saturation at 750 mV is clearly visible. <br>
    The charge when this happens is ~ 900 phe (92 MeV): this is much
    larger than 750 mV / 12 mV = 62 phe (12 mV is the single phe
    amplitude for this MPPC). <br>
    The reason is the CsI(Tl) long decay time: a signal with 750 mV
    amplitude has a large contribution to the charge given by photons
    hitting the MPPC after the signal head, in the scintillation tail.
    This effect is a factor ~ 900 / 62 ~ 15.<br>
    For the 50 um MPPC, saturation happens at ~ 1000 phe (50 MeV).<br>
    <br>
    * By "amplifier saturation" I mean the effect shown in the
    "saturatedSignal.png" plot: the head of the signal has an amplitude
    > 750 mV, hence gets "truncated" due to the amplifier limited
    output range. Clearly, for these signals, there is still a relation
    between the deposited energy in CsI(Tl) and the measured charge, but
    it is non linear.<br>
    <br>
    * The "amplifierSaturation2.png" plot is, again, the Q1 vs Q2 plot
    for the crystal, run 1138. I reported with red lines the points
    where MPPC 25 um and MPPC 50 um starts to saturate due to the
    amplifier. We can identify 3 regions<br>
    <br>
    --> Q1 < 900 AND Q2 < 1000: both amplifiers here are in a
    linear regime (E1<92 MeV AND E2<50 MeV)<br>
    --> Q1<900 AND Q2> 1000: MPPC 50 um output is > 750 mV,
    hence the amplifier saturates. However, 25 um MPPC is in a linear
    regime<br>
    --> Q1>900 AND Q2>1000 : both amplifiers are in the
    saturation regime.<br>
    <br>
    * To summarize: <br>
    --> Saturation effects we see are due to the limited amplifier
    output range. Intrinsic MPPC saturation here, in particular for the
    25um MPPC, is not expected to play a significant role. <br>
    --> In order to measure properly the high-energy part of the
    spectrum, 25 um MPPC can be used, provided we lower the amplifier
    gain. A factor of 6 reduction is feasible (more than this is
    complicate): this results in a saturation happening a ~ 5400 phe,
    i.e. 540 MeV. To do so: R10=51 Ohm should be removed in the
    amplifier, R11=270 Ohm should be kept as it is, R12=51 Ohm should be
    replaced with a 0 Ohm resistor.<br>
    (Note that in my previous e-mail I proposed a factor x3 reduction in
    gain. Probably, this is not enough if we really want to reach the
    500 MeV region)<br>
    <br>
    Bests,<br>
    Andrea<br>
    <br>
    <br>
    <br>
    <br>
    <div class="moz-cite-prefix">On 03/30/2016 09:37 AM, osipenko wrote:<br>
    </div>
    <blockquote cite="mid:56FB823A.40909@ge.infn.it" type="cite">
      <meta content="text/html; charset=windows-1252"
        http-equiv="Content-Type">
      Hi Andrea,<br>
      <br>
      in the plot on X-axis you have probably lost 10^3 (phe).<br>
      <br>
      Unlikely the difference has to do with amplifier bandwidth, it
      shall be a minor effect. Perhaps the real saturation would need
      "an effective" number of cells to account for cross talk. Looking
      on your plot I would say that for 50 um MPPC the effective number
      of cells id 2,000, not 3,600.<br>
      <br>
      Cheers,<br>
      Misha.<br>
      <br>
      <br>
      <br>
      <br>
      <div class="moz-cite-prefix">On 03/29/2016 11:39 PM, Andrea
        Celentano wrote:<br>
      </div>
      <blockquote
        cite="mid:21055_1459287889_u2TLiidK018388_56FAF607.9000003@ge.infn.it"
        type="cite">
        <meta content="text/html; charset=windows-1252"
          http-equiv="Content-Type">
        Dear all,<br>
        I investigated the saturation effect as seen in the calorimeter,
        and I'd like to share with you what I found.<br>
        <br>
        1A) The single-phe charge, for both MPPC mounted on the crystal,
        is ~ 712 pVs. This is consistent with the measurement that was
        performed in Genova, where we found 1.4 nVs for both: in Catania
        there is a x2 splitter between each MPPC and the DAQ.<br>
        <br>
        1B) The single-phe amplitude measured by DAQ (i.e. after
        splitting) is:<br>
        - For the 25 um MPPC: 12 mV<br>
        - For the 50 um MPPC: 9.7 mV<br>
        The two are different, but the area is the same, since the
        single phe-signal has a slightly different shape between the
        two, the 50 um is longer (it is reasonable: for the same total
        MPPC capacitance, the 50 um capacitance per cell is larger,
        hence the single phe signal is longer)<br>
        <br>
        1C) Our amplifiers are really NOT optimized for output dynamic
        range. According to the schematic (attached), the last stage is
        OPA694-based. This has an output dynamics of 3V. However,
        there's also a 50 Ohm-50 Ohm x2 voltage divider, between the
        output resistor (R12) AND the 50 Ohm impedance of the splitter.
        It means the maximum output voltage MEASURED by the DAQ is 750
        mV for both channels (3 V of OPA 694 -> 1.5 V after voltage
        divider-> 750 mV out of splitter). This means that the
        maximum number of phe is:<br>
        <br>
        - For the 25 um MPPC: 62.5 phe<br>
        - For the 50 um MPPC: 77 phe<br>
        <br>
        <b>Important:</b> this limit holds for a signal where all the
        phe are syncronous, i.e. detected almost at the same time, such
        as a fast plastic scintillator. For a CsI detector, that has a
        very long decay time compared to the amplifier response time,
        the actual MAXIMUM number of measurable phe is much larger
        (since they arrive at different times). If I consider the
        single-phe signal time ~ 100 ns, and the CsI(Tl) decay time ~ 1
        us, the ratio x10 suggests that AT LEAST we can measure 10x phe
        than the two numbers above.<br>
        <br>
        2) Other than the amplifiers saturation, there's the intrinsic
        saturation of the MPPC, that can't fire more than Ncells, where
        Ncells=3600 for the 50 um MPPC, and Ncells=14400 for the 25 um
        MPPC. <br>
        <br>
        IF all the incoming photons were hitting the two MPPCs in a time
        interval shorter than the MPPC-cell recovery time (~10 ns?),
        then, for a input signal of N0 photons, the response of the
        MPPCs would be:<br>
        <br>
        Nphe =  Ncells * (1-exp(-N0*PDE / Ncells))<br>
        <br>
        Here, the situation is again more complicated, since photons ARE
        NOT hitting the MPPCs at the same time, given the long CsI(Tl)
        decay time.<br>
        <br>
        3) From cosmics-ray calibrations, the two MPPCs have a different
        overall gain, i.e. the number of phe seen per MeV is different,
        probably due to a different optical coupling / PDE (Hamamatsu
        quotes 25% for 25um and 40% for 50um)<br>
        <br>
        - For the 25 um MPPC: 9.73 phe/MeV<br>
        - For the 50 um MPPC: 19.67 phe/MeV<br>
        <br>
        Note that these two numbers were derived without correcting for
        the intrinsic MPPC saturation.<br>
        <br>
        4) I took run 1338 and plotted, for all the events, the two MPPC
        charges, one against the other, in phe. <br>
        Attached is the result.<br>
        Using the two cal. constants before *assuming cosmics are in a
        low-charge area, where saturation can be neglected*, one can
        derive the expected charge of MPPC 50 um as a function of the
        measured charge of MPPC 25 um:<br>
        <br>
        - Completely ignoring saturation, Q(50) = Q(25) * 19.67 / 9.73 <br>
        - Ignoring saturation for 25 um (since Ncells is "large"), but
        considering for 50 um saturation-for the case of all photons
        hitting the MPPC together: Q(50) = Ncells(50) * (1 - exp(-(Q(25)
        * 19.67 / 9.73)/Ncells(50))<br>
        <br>
        The two super-imposed curves refer to the two above scenarios.
        One can see that, although the two curves reproduce the order of
        magnitude of the data, neither agree with it well.<br>
        It seems that the "no-saturation" curve is better at low charge
        - because photons hitting the MPPC are distributed in time,
        hence for a single event the SAME MPPC cell can fire twice.<br>
        At higher charge neither curve reproduces data - but here also
        the amplifier saturation is important too.. <br>
        <br>
        Bottom-line messages:<br>
        - Saturation and non-linearity effects in the crystal are very
        complicate - analytical formula we are used to do not apply so
        easily, given the fact CsI(Tl) photons hit the MPPCs in a longer
        time than the MPPC intrinsic one<br>
        - I'd suggest to use the two MPPCs to measure different energy
        regions: <br>
        --Low energy measured by the 50 um MPPC (higher PDE)<br>
        --High energy measured by the 25 um MPPC (higher number of
        cells)<br>
        <br>
        To do so, it would be good to increase the dynamic range of the
        25 um amplifier: this can be done by changing, in amplifier
        n.10, resistor R11 from 270 Ohm to ~ 100 Ohm, thus decreasing
        the amplifier gain by a factor of ~3. Marzio, Mariangela, can
        you do so?<br>
        <br>
        Please, let me know what you think about.<br>
        <br>
        Bests,<br>
        Andrea <br>
        <br>
         <br>
        <br>
        <br>
        <fieldset class="mimeAttachmentHeader"></fieldset>
        <br>
        <pre wrap="">_______________________________________________
BDXlist mailing list
<a moz-do-not-send="true" class="moz-txt-link-abbreviated" href="mailto:BDXlist@jlab.org">BDXlist@jlab.org</a>
<a moz-do-not-send="true" class="moz-txt-link-freetext" href="https://mailman.jlab.org/mailman/listinfo/bdxlist">https://mailman.jlab.org/mailman/listinfo/bdxlist</a>
</pre>
      </blockquote>
      <br>
    </blockquote>
    <br>
  </body>
</html>