

Dark Matter search with the BDX-MINI experiment

Marco Spreafico

On behalf of BDX Collaboration

06 - 06 - 2026

Introduction

- Light Dark Matter
- Dark Photon model
- Beam Dump Experiments
- BDX
- BDX-MINI
 - Experimental setup
 - Detector
 - Background
 - Detector performance
 - Background
 - Data analysis
 - Results
- Outlook

Light Dark Matter	BDX	BDX-MINI	Outlook
●0000000	000	0000000	0
Dark Matter Problem			

- $\rightarrow~$ Information only from gravitational interaction
- $\Rightarrow \ \ \, \text{No clue on DM nature}$

- $\rightarrow~$ DM we see comes from an epoch of thermodynamical equilibrium with SM
- ightarrow constrain on available mass range
- $\rightarrow~$ strong constraint on viable DM \rightarrow SM interaction

$$10^{-30} \text{ eV} \qquad \qquad 10^{30} \text{ kg}$$

Light Dark Matter	BDX	BDX-MINI	Outlook
●0000000	000	0000000	O
Dark Matter Problem			

- $\rightarrow~$ Information only from gravitational interaction
- $\Rightarrow \ \ \, \text{No clue on DM nature}$

- $\rightarrow~$ DM we see comes from an epoch of thermodynamical equilibrium with SM
- \rightarrow constrain on available mass range
- $\rightarrow~$ strong constraint on viable DM \rightarrow SM interaction

Light Dark Matter	BDX	BDX-MINI	Outlook
●0000000	000	0000000	O
Dark Matter Problem			

- $\rightarrow~$ Information only from gravitational interaction
- $\Rightarrow \ \ \, \text{No clue on DM nature}$

- $\rightarrow~$ DM we see comes from an epoch of thermodynamical equilibrium with SM
- \rightarrow constrain on available mass range
- $\rightarrow~$ strong constraint on viable DM \rightarrow SM interaction

Light Dark Matter	BDX	BDX-MINI	Outlook
●0000000	000	0000000	0
Dark Matter Problem			

- $\rightarrow~$ Information only from gravitational interaction
- $\Rightarrow \ \ \, \text{No clue on DM nature}$

- $\rightarrow~$ DM we see comes from an epoch of thermodynamical equilibrium with SM
- \rightarrow constrain on available mass range
- $\rightarrow~$ strong constraint on viable DM \rightarrow SM interaction

Light Dark Matter	BDX	BDX-MINI	Outlook
0000000	000	000000	

Light Dark Matter - Dark Photon model

Simplest possibility: "vector portal"¹

ightarrow ~U(1) gauge boson (dark photon) coupling to electric charge

$$\mathcal{L}_{LDM} \sim g_D A'_\mu J^\mu_\chi + \epsilon e A'_\mu J^\mu_{EM} + [...]$$

Annihilation in SM:

¹ For a comprehensive review: 1707.04591, 2005.01515, 2011.02157

Light Dark Matter	BDX	BDX-MINI	Outlook
0000000	000	0000000	

Light Dark Matter - Dark Photon model

Simplest possibility: "vector portal"¹

ightarrow ~U(1) gauge boson (dark photon) coupling to electric charge

$$\mathcal{L}_{LDM} \sim g_D A'_\mu J^\mu_\chi + \epsilon e A'_\mu J^\mu_{EM} + [...]$$

Annihilation in SM:

Model parameters:

- Dark Photon mass $m_{A'}$, coupling to SM arepsilon
- Dark Matter mass m_{χ} , coupling to DM g_D $(\alpha_D \equiv g_D^2/4\pi)$

$$y \equiv \frac{g_D^2 \epsilon^2 e^2}{4\pi} \left(\frac{m_\chi}{m_{A'}}\right)^4 \sim \langle \sigma v \rangle_{\rm relic} m_\chi^2$$

¹ For a comprehensive review: 1707.04591, 2005.01515, 2011.02157

Light Dark Matter	BDX	BDX-MINI	Outlook
oo●ooooo	000	0000000	0

Light Dark Matter

Direct detection not well suited for sub-GeV DM searches:

- DD experiments optimized for $m_{\chi} > {
 m GeV}$
 - $\rightarrow E_R \propto m_\chi^2/m_N$
 - \Rightarrow very low recoil energy
- LDM-SM interaction cross section depends on impinging particle velocity
 - \rightarrow DD sensitivity strongly model-dependent

LDM at accelerators

Accelerator based experiments at the *intensity frontier* uniquely suited to search for LDM:

- $\rightarrow~$ High intensity \Rightarrow increased possibility of DM production
- \rightarrow Production of relativistic DM \Rightarrow testing different models

Light Dark Matter	BDX	BDX-MINI	Outlook
000●0000	000	0000000	0
Beam Dump experiments			

Beam dump experiments: direct detection of LDM produced by beam impinging on fixed target (beam dump)²

 χ production

- $\bullet \ e^-$ beam impinging on target
- χ from decay of A' produced in the dump

² Izaguirre et al., Phys. Rev. D 88, 114015

³ L. Marsicano et al., Phys. Rev. Lett. 121, 041802

Light Dark Matter	BDX	BDX-MINI	Outlook
00000●00	000	0000000	0
Beam Dump experiments			

Beam dump experiments: direct detection of LDM produced by beam impinging on fixed target (beam dump)²

 χ production

- $\bullet \ e^-$ beam impinging on target
- χ from decay of A' produced in the dump

χ interaction

- $\bullet\,$ Detector placed behind the dump (~ 10 m)
- χ scattering through A' exchange

² Izaguirre et al., Phys. Rev. D 88, 114015

³ L. Marsicano et al., Phys. Rev. Lett. 121, 041802

Light Dark Matter	BDX	BDX-MINI	Outlook
oooooooo●	000	0000000	0

Beam Dump experiments

Beam dump experiments: direct detection of LDM produced by beam impinging on fixed target (beam dump)^2 $% \left(\frac{1}{2} \right)^{2}$

 χ production

- e^- beam impinging on target
- χ from decay of A' produced in the dump

Number of signal events: $S \propto \frac{\alpha_D \varepsilon^4}{m_{A'}^4}$

- $\bullet\,$ Detector placed behind the dump (~ 10 m)
- χ scattering through A' exchange

 $[\]chi$ interaction

² Izaguirre et al., Phys. Rev. D 88, 114015

Light Dark Matter	BDX	BDX-MINI	Outlook
00000000	●○○	0000000	0
BDX			

BDX is a **JLab experiment** approved by PAC46

- \rightarrow unique experiment able to produce and detect LDM
- → beam dump experiment specifically aimed at LDM searches

Experiment designed with two goals:

LDM production and detection

- $\rightarrow\,$ Exploit CEBAF high-intensity beam
- $\rightarrow \ \text{Medium-high energy beam}$
- \rightarrow EM shower detection capability
- $\rightarrow\,$ Fully parasitic

Minimize background

- $\rightarrow\,$ Shielding to filter beam-related background
- \rightarrow Multi layer veto for cosmogenic background
- \rightarrow Segmented detector
- \rightarrow Time resolution for detector-veto coincidence

Light	D	a		Μ	а	e	
0000	0		00				

BDX

BDX-MIN 000000

BDX - Experimental Setup

JLAB offers the best condition for BDX:

- High energy beam (11 GeV)
- High electron beam current (65 μ A)
- Fully parasitic wrt Hall-A physic program (Moeller)

New facility to be built in front of Hall-A beam dump:

- $\bullet\,$ new underground ($\sim 8\,$ m) hall
- 25 m downstream of Hall-A beam dump
- passive shielding ($\sim 6.6~{\rm m}$ iron) to reduce beam related background
- $\bullet \sim 10~\text{m}$ water equivalent overburden to reduce cosmogenic background

Light Dark Matter	BDX	BDX-MINI	Outlook
00000000	oo●	0000000	0

BDX - Detector

Detector design

Electromagnetic calorimeter:

 homogeneous calorimeter made with CsI(TI) crystals read by SiPM

Veto system:

- hermetic multi layer veto
- 2 layer of plastic scintillator counters read by WLS fibers and SiPM
- 5 cm lead vault between veto and calorimeter

Modular detector arrangement:

- 1 module: 10×10 crystals
 - $50 imes 50 \ {
 m cm}^2$ front face, 30 cm long
 - Module surrounded by veto

Signal detection:

- $\bullet\,$ EM shower (\gtrsim 100 MeV) and no corresponding activity in the active veto
- $\bullet~{\rm Signal}~{\rm efficiency}\sim 20\%$

ightarrow total: 8 modules (~ 2.6 m length)

Light	Dark	Matter
oõoc		

BDX

BDX-MINI ●000000

BDX-MINI experiment

Pilot version of BDX:

- 2.56 GeV e^- beam (10 GeV beam used for calibration)
- $\bullet\,$ current up to $150\,\,\mu\mathrm{A}$
- measurement alternating beam on and beam off data (beam on time \sim 50 %)
- $\bullet~{\rm accumulated}~2.54\times10^{21}~{\rm EOT}$
- beam off measurements for cosmic background characterization

M. Battaglieri et al., Eur.Phys.J.C 81 (2021) 2, 164

Light	Dark	M	atter	
0000	0000	С		

BDX-MINI detector

Electromagnetic calorimeter (ECal):

- 44 PbWO₄ crystals ($4 \times 10^{-3} \text{ m}^3$ active volume)
- SiPM readout

BDX-MINI

M. Battaglieri et al., Eur.Phys.J.C 81 (2021) 2, 164

Light Dark Matter	000	BDX-MINI	Outlook
00000000	BDX	o€ooooo	O
BDX-MINI detector			

Electromagnetic calorimeter (ECal):

- 44 PbWO₄ crystals ($4 \times 10^{-3} \text{ m}^3$ active volume)
- SiPM readout

Veto system

- Active veto:
 - Octagonal (IV) and cylindrical (OV) plastic scintillator
 - Optically continuous
 - SiPM readout + WLS fibers light collection
- Passive tungsten shielding
 - 0.8 cm thick

M. Battaglieri et al., Eur.Phys.J.C 81 (2021) 2, 164

Light Dark Matter BDX BDX-MINI 00000000 000 00000000	Light Dark Matter 00000000	BDX ooo	BDX-MINI 00€0000	
--	-------------------------------	------------	---------------------	--

Detector performance

Detector performance:

- Calibration with special 10 GeV run
- $\bullet\,$ Stability monitored with cosmic μ

ECal energy response

- Energy calibration determined from 10 GeV data
 - $\rightarrow~$ compared secondary μ between data and MC
- Stability monitored with beam off data
 - $\rightarrow~$ Selected penetrating μ with Landau peak

VETO stability

- Veto efficiency monitored with cosmic muons
 - ightarrow tag-and-probe method
 - $\rightarrow~$ trajectories selected with ECal energy deposition

Outlook

Light Dark Matter	BDX	BDX-MINI	Outlook
0000000	000	000€000	O
Backgrounds			

Two main sources of background:

Beam related background

Yield estimate through MC simulations (FLUKA+GENIE+Geant4)

- MC simulation validated with in-situ measurement
- ν only background \rightarrow negligible: 5.8×10⁻²³ ν /EOT

Cosmogenic background

- $\bullet~$ Continuous measurement $\Rightarrow~$ no rejection
- Charged particles rejected requiring veto anti-coincidence
- Further suppression can be achieved using energy cut

Measured cosmic background

Light Dark Matter	BDX	BDX-MINI	Outlook
00000000	000	0000€00	O

Data analysis

Approach

Blind analysis: experiment sensitivity optimized with MC simulations and beam-off data

Model: ON-OFF problem

$$\mathcal{L} = \prod_{j} \left[P(n_{\text{on}}^{j}; \mu_{c}^{j} + \mu_{b}^{j} + \alpha^{j} \cdot S) \cdot P(n_{\text{off}}^{j}; \mu_{c}^{j} \cdot \tau) \right]$$

- Data binned according to total energy deposition in ECal
- n_{on}^{j} , n_{off}^{j} : measured number of events during beam-on/beam-off intervals ($\tau = T_{off}/T_{on}$)
- μ_c^j/μ_ν^j : expected number of cosmogenic/beam-related backgrounds events
- μ_{ν}^{j} evaluated via MC, μ_{c}^{j} treated as nuisance parameter.

 $\mbox{Systematic uncertainties:}$ described via ancillary pseudo-measurement factors in ${\cal L}$ with Gaussian constraint

ightarrow one-sided profile-likelihood test statistics to evaluate upper limit on S

M. Battaglieri et al., Phys.Rev.D 106 (2022) 7, 072011

.ight Dark Matter	BDX	BDX-MINI	Outlook
Dooooooo	000	⊙⊙⊙⊙⊙●⊙	O
• · · · · · · · ·			

Sensitivity optimization

Idea: improve sensitivity considering effect of data analysis cuts on background minimization and signal maximization

- $\rightarrow~$ beam-on data extrapolated from beam-off data
- $\rightarrow~$ used only events in anti-coincidence with veto
- $\rightarrow~$ evaluated upper limit on signal yield with different cuts and converted to exclusion limit

Light Dark Matter	BDX	BDX-MINI	Outlook
00000000	000	○○○○○○●	O
Unblinding			

Last step: unblinding and analysis of beam on data

Experimental results

Yields (for $N_{EOT} = 2.54 \cdot 10^{21}$)

• $N_{on} = 3623$

•
$$N_{off} = 3822 \ (\tau = 1.054)$$

No excess is observed

 $\rightarrow~$ evaluated 90% exclusion limit in the LDM parameter space

M. Battaglieri et al., Phys.Rev.D 106 (2022) 7, 072011

Light Dark Matter	BDX	BDX-MINI	Outlook
00000000	000	0000000	●
Conclusions			

- MeV-GeV Dark Matter range largely unexplored
- Beam Dump eXperiment at JLab: search for Dark Sector particles in the MeV-GeV mass range
- **BDX-MINI**: pilot version of BDX
 - First modern beam dump experiment searching for Light Dark Matter
 - Detector optimized for LDM searches
 - Analysis aimed to Light Dark Matter detection
 - $\bullet\,$ Evaluated exclusion limit \rightarrow competitive to flagship experiments
- $\bullet\,$ Beam dump experiment at e beam dump highly sensitive to Light Dark Matter in the MeV-GeV range