Neutron Structure with the BONuS12 Experiment

DNP2020 – October 29, 2020

Important open questions in nucleon structure at high-x:

 \rightarrow What is F_2^{n} / F_2^{p} and d/u for $x \rightarrow 1$?

. . .

- \rightarrow How well does quark-hadron duality hold in the neutron
 - => confront dynamical models of duality
- \rightarrow How is the deuteron "constructed" from proton and neutrons?
 - I. What is the EMC effect in the deuteron?
 - II. Are there isospin dependent off-shell effects in light nuclei?

Answering these questions requires precision structure function data on:

proton, deuteron, neutron, and A=3 mirror nuclei

Ratio of d/u quark distributions at $x \rightarrow 1$ provides testing ground for nucleon models

Still an open question, but JLab 12 GeV experiments should help provide answers soon.

"Barely Off-Shell Neutron Structure" (BONuS) Experiment

Results from E_{h} = 6 GeV Experiment

Selection of backward, low momentum protons minimizes nuclear corrections

Final State Interactions:

- Struck neutron interacts with the spectator p.
- - Proton momentum is enhanced.
 - FSIs are small at low p_s and large θ_{pq} .

Target Fragmentation:

- e n \rightarrow e p X (where n $\rightarrow \pi^{-}$ p) and
 - e p \rightarrow e p X (where p $\rightarrow \pi^0$ p).

- TF enhances the proton yield at forward₈, angles ($\cos \theta_{pq} > 0.6$). PWIA $P^{WIA})/\sigma_{sp}^{r}$

Off-Shell Corrections:

- Less than 2% in our region.

Expect total systematic uncertainities to be less than 5%

0.9

0.85

0.8

1.0

100

200

 $|\vec{p}|$ (MeV)

6

300

 $p^2)/F_2^n(W^2)$

40 Q

M.Eric Christy

0.2

0 sp

(σ_{tf} +

Ш

R

3.

x = 0.2

0.4

 $Q^{2}=5 (GeV/c)^{2}$

0.6

 $\cos \theta_2$

DNP2020, October 31

0.8

Expected BONuS12 precision (proposal)

MARATHON + E12-10-002

- BONuS12 has similar coverage as E12-10-002 SHMS, but also extends to lower Q²
- Marathon kinematic region covered by all 3 experiments
- => Leverage all 3 experiments to study: 1. F_2^n / F_2^p (d/u),

nuclear effects in light nuclei,
 isospin dependent effects

BONuS12 Experimental Setup in CLAS12

$e^{-} d \rightarrow e^{-} p X$

- CLAS12 Forward Detector:

- \rightarrow Superconducting Torus magnet.
- \rightarrow 6 independent sectors:
 - → HTCC
 - \rightarrow 3 regions of DCs
 - → LTCC /RICH
 - → FTOF Counters
 - \rightarrow PCAL and ECs
 - \rightarrow FT (1/2)

- Central:

- \rightarrow Target: D gas @ 6 atm, 293 K
- → BONuS12 RTPC —
- \rightarrow FMT
- \rightarrow Solenoid (3.5 4 T)
- $\rightarrow\,$ CTOF, and CND

 $E_{beam} = 10.6 \text{ GeV}, 2.1 \text{ GeV} \text{ (calibrations)}$ 35 days on D 5 days on ⁴He/H₂ with L = 2 \cdot 10 ³⁴ cm⁻² sec⁻¹

BONuS12 RTPC

- \rightarrow Active length: **40 cm**
- → Radial drift distance: 4 cm
- \rightarrow Drift gas **He/CO**₂ (**80/20**)
- → **3** GEM amplification layers
- → **16** HV sectors per GEM (Segmented in φ)
- → Pad readout: **2.8 mm x 4 mm**

=> 17,280 channels

FEU electronics → **Signal height vs. Time bin**

- Time + drift path \rightarrow hit position
 - => track reconstruction vertex + momentum vector

- integrated signal + pad gains $(G_i) \rightarrow$

$$\left\langle \frac{dE}{dX} \right\rangle = \frac{\sum_{i} \frac{ADC_i}{G_i}}{vtl}$$

M.Eric Christy

DNP2020, October 31

10

RTPC Assembly @ Hampton U. In Collaboration with ODU & JLab

GEM foil wrapping and gluing

Automated epoxy

Wrapped Padboard

application

inner surface

1st GEM layer lowered onto chamfer plate assembly utilizing selfalignment jig

All GEM layers installed

FEILIN

Installation of **Cathode / ground** assembly

Readout board on triple-GEM assembly

being installed

CLAS12 RG-F (BONuS12) Data Summary

Finished data taking ~ 1 **month ago**

- -> Significant statistics taken for final physics results
- -> only event reconstruction and calibration quantities will be shown.

Beam Energy	Target	Spring 2020	Summer 2020
1 Pass Data	H2	81M	185M
	D2	37M	45M
	4He	19M	44M
	Empty	1M	22M
	Total	138M	296M
5 Pass Data	H2	151M	266M
	D2	2275M	2355M
	4He	77M	51M
	Empty	21M	45M
	Total	2524M	2717M

RTPC Track Reconstruction (calibrations in progress)

Preliminary Calibration Data Analysis

Preliminary Analysis – 5 Pass Data (subset)

e⁻ @10.4 GeV beam on D₂ target

Proton Selection on D₂ target

Summary

- BONuS12 successfully completed data taking in JLab Hall B
 - Significant statistics collected for determination of "nearly" free neutron F₂
- Next Generation RTPC performed well with calibration in progress
- Expect significant impact on determination of F₂ⁿ and d/u at large x
 Q² lever arm.
- Range of physics to be explored.
- Combined results from BONuS12, Marathon, and Hall C proton and deuteron F₂ provide data on possible isospin dependent off-shell effects and medium modification effects in light nuclei.