

BONuS12-RTPC Calibration For RG-F

M. Hattawy (On behalf of RG-F)

RG-F Pass1v2 Readiness Review, June 17th, 2022, JLab

Data Scope

Showing runs: 12389 - 12951. 472 runs per page. Total runs: 472

Data Range:

- Summer run:

- 12389 12434 (Out-bending 1 pass) 12435 – 12443 (In-bending 1 pass)
- 12447 12951 (In-bending 5 pass)

Beam Energy	Target	Summer 2020
1 Pass Data	H2	185M
	D2	45M
	4He	44M
	Empty	22M
5 Pass Data	H2	266M
	D2	2355M
	4He	51M
	Empty	45M
		3013M

Calibration Scope

- * Detectors calibration to be reviewed:
- RTPC
- HTCC
- DC
- LTCC
- RICH
- FTOF
- **-** EC

* Detectors to be later calibrated (pass2):

- FMT (3 layers)
- CND + CTOF

RTPC Calibration

RTPC Calibration

- Work principle:

- Charged particle ionizes the gas atoms
 - \rightarrow Under EM field, released electrons follow their drift paths at a certain drift speed
 - \rightarrow Amplifications via the 3 GEM layers
 - \rightarrow Readout board \rightarrow MVT FEU electronics \rightarrow

- Offline reconstruction:

* Signal height Pads' gain (G_i)
$$\checkmark \left\langle \frac{dE}{dX} \right\rangle = \frac{\sum_{i} \frac{ADC_{i}}{G_{i}}}{vtl}$$

Recorded info

- Pad $\# \rightarrow$ Pad (x,y,z)

- Signal height

- Time

RTPC Track Reconstruction

1. Track Finding: Hits chaining into contiguous collections, i.e. tracks

2. Time shifting: Each chain of hits for a track is shifted in time, such that the first ionization starts at the cathode.

3. Reconstructing the hit position:

(Pad $\# \rightarrow$ Pad (x,y,z), Time) \rightarrow The original location of the ionization can be determined as:

* a, b, parameters are z-dependent parameters initially calculated by a simulation of the magnetic field in Garfield++ and re-tuned using real data (next slide).

a_t = "Smallest Time" = time offset b_t = the max. drift time (Largest time - Smallest Time) a_ ϕ (comes entirely from the GARFIELD++, the drift between GEM1 and Padboard) b_ ϕ = tan(θ _Lorentz)

4. Helix Fitting \rightarrow Track's p/q, vz, ...

BONuS - Timing

- Smallest time \rightarrow Timing offsets between the trigger and the RTPC.
- Largest time \rightarrow Sum of offset + maximum drift time
- Largest Smallest time \rightarrow maximum drift time from cathode to GEM1
- Time shift \rightarrow Difference between measured largest time within a track and that expected for an in-time track

BONuS – Timing (Smallest Time)

BONuS – Timing (Largest Time)

Bonus Track Largest Time (mean)

BONuS – Timing Quality Timelines

Tracks' Disentangler: Distinguishing the crossing tracks.

ID= 1 150 + ID= 2 × ID= 3 100 • ID= 4 ID = 550 ID= 6 hits' z [mm] ID = 7ID= 8 ID= 9 ID= 10 • ID= 11 • ID= 12 -1000 • ID= 13 0 ID= 14 -150 et en en parties parties de la construcción de la construcción de la construcción de la construcción de la cons ID= 15 ID= 16 -200-3 -2-1 2 3

hits/ ϕ [rad]

Original hits before disentangler

Tracks' Disentangler: Distinguishing the crossing tracks.

• ID= 17 * **** * 150 • ID= 18 • ID= 19 • ID= 20 100 D= 21 ▲ ID= 22 50 ID= 23 hits' z [mm] • ID= 24 □ ID= 25 △ ID= 26 Ē -988. ◊ ID= 27 -50 ⊕ ID= 28 * ID= 29 -100∀ ID= 30 * ID= 31 -150ID= 32 ID= 33 -3-2-1 2 3 0 4 hits/ ϕ [rad]

Final hits

Old Disentangler

Tracks' Disentangler: Distinguishing the crossing tracks.

Updated Disentangler

Final hits

Back-benders and tracks crossing the seam of the RTPC:

Old Helix Fitter

Back-benders and tracks crossing the seam of the RTPC: (+40% more tracks were reconstructed)

Lorentz Angle Calibration

 \rightarrow Use radiative e-p elastic scattering (beam bremsstrahlung) at 1-Pass to calibrate the RTPC (θe - [5°,8°]).

- \rightarrow Then calculate the energy of the gamma simply ASSUMING that the event was elastic.
- → Simple, first estimation for energy loss applied, but will be refined in the future.
- \rightarrow Modify the Lorentz angle until we get the best agreement between the measured and the predicted momentum for protons in H(e,e'p) γ .

2.14 GeV on H₂ target

BONuS – Improving Gain Calibration

→ Using real data pads' occupancy info, each pixel gives the ratio of the ADC sum for a given pad divided by the number of hits on that pad, which defines a pad "gain".

 \rightarrow This method **did not correct** for an observable dependence of dEdx of the recoils on the longitudinal position along the target.

BONuS – Improving Gain Calibration

 \rightarrow Using On-time reconstructed tracks (that spans the full drift region from the Cathode to the Anode)

- → Comparing every pad's collected charge (ADCs) in a track to the median full track's collected charge.
 - \rightarrow Average this ratio (pad's gain) over enough statistics for every pad.
 - \rightarrow This method **has corrected** for the vz-dependance.

BONuS – dEdx Timelines

RUN 12422: dEdx vs. vz (protons [70, 120] MeV/c)

dEdx timelines Observables: using protons from all the target types:

- dEdx amplitude: the constant of the fit.
- dEdx slope vs. vz: the slope of the fit.
- dEdx percentage ratio:
 - = target_length*slope/constants

BONuS – dEdx Amplitude Timeline

BONuS – dEdx vs. vz Slope

 \equiv

BONuS – dEdx Percentage Ratio Timelines

CLAS12-RTPC z alignment

Pass1v2

RUN 12409: vz_{e-} - vz_{rtpc} [cm]

RUN 12409: vz_{e-} - vz_{rtpc} [cm]

CLAS12-RTPC z-Alignment Timeline

AI vs. Conventional DC Tracking

DC Residuals: Conventional vs. AI Tracking

DC Residuals: Conventional vs. AI Tracking

Summary

Subsystem	Timeline	Constraint (RG-B)	Constraint (RG-F)
RF	rftime electron FD mean	<±10 ps	<±10 ps
	rftime electron FD sigma	< 70 ps	< 70 ps
LTCC	ltcc elec nphe sec	12-14	5-20
HTCC	htcc nphe sec	11-13	10-13
FTOF	ftof edep p1a midangles	9.25-10.5 MeV	9.25-10.5 MeV
	ftof edep p1b midangles	11.25-12.25 MeV	11.25-12.25 MeV
	ftof edep p2	9.2-10.2 MeV	9.2-10.2 MeV
	ftof time p1a mean	<±25 ps	<±25 ps
	ftof time p1a sigma	< 125 ps	< 125 ps
	ftof time p1b mean	<±15 ps	<±15 ps
	ftof time p1b sigma	< 70 ps	< 70 ps
	ftof time p2 mean	<±50 ps	<±50 ps
	ftof time p2 sigma	< 325 ps	< 325 ps
ECAL	ec Sampling	0.24-0.26	0.22-0.25
	ec gg m mean	131-134 MeV	128 -142 MeV
	ec gg m sigma	< 15 MeV	< 15MeV
DC	dc residuals sec mean	<±0.005 cm	<[-0.03,0.01] cm
	dc residuals sec sl sigma	R1,R3 < 300 um, $R2 < 400$ um	< 450 um
RICH	rich time fwhm max	< 1 ns	<1ns