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Chapter 1

RESULTS

1.1 Introduction

The BoNuS data were analyzed using two different methodologies. In the Ratio Method, events

tagged with a spectator proton in the RTPC were sorted into kinematic bins and normalized by

the inclusive deuteron scattering events for the same kinematics. In this way, the problems of

absolute normalization and CLAS acceptance were handled naturally by always dealing with

experimental ratios and world parameterizations of known quantities such as the deuteron and

proton cross sections. In the Monte Carlo (MC) Method, the tagged spectator events were

compared directly to a Monte Carlo simulation of CLAS with events generated according to a

plane-wave impulse approximation (PWIA) spectator model. The MC Method produces ratios

of data to the simulation, whereas the Ratio Method uses ratios of tagged data to inclusive

data. Therefore, the two methods have somewhat different systematic dependencies and their

systematic errors are partially independent. Comparing both methods therefore increases the

confidence in the extracted results. Both methods produce consistent results and exemplify the

success of the tagging technique to measure the free neutron’s structure using neutrons bound

in nuclei. They are at least partially independent from each other and have somewhat different

systematic effects; therefore, a direct comparison of both methods can increase our confidence

that systematic errors are under control.

1.2 The Ratio Method

For the Ratio Method, the experimental quantity of interest is the ratio of ed scattering events

tagged by a spectator proton and untagged, corresponding to inclusive ed scattering. Once

1
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corrected for backgrounds and efficiency, this tagged to untagged ratio equals the structure

function ratio Fn
2 /F

d
2 , provided that the R structure function for the neutron and the deuteron

are reasonably close to each other. In order to reduce the effects of final-state interactions and

off-shell effects, the spectator momentum was chosen to be 0.07 < ps < 0.10 GeV and the

spectator angle with respect to the momentum transfer was chosen to be θpq > 100◦.

1.2.1 Accidentals

Coincidence events with an electron measured in CLAS and a spectator proton measured in the

RTPC are confirmed by comparing the position z along the beam line of track origins. Fig. 1.1

shows the spectrum of zCLAS−zRTPC. The large central peak corresponds to true coincidences,

and the background on either side corresponds to accidental electron-proton coincidences. The

z distributions for electrons and protons are flat over the 16cm length of the target. Therefore,

the convolution of these two distributions gives rise to a triangular background spectrum. By

fitting the background and peak, one can characterize the events that fall within and outside of

the blue limits. A simple multiplicative factor Rbg scales the background events to correspond

to the number of accidental coincidences under the peak.

1.2.2 Acceptance and Efficiency

The relative CLAS electron detection efficiency ǫ was determined for bins in Q2 and W using

the ratio of observed inclusive scattering rates off the deuteron compared to the radiated model

of Bosted and Christy[5, 4] derived from global fits to the world’s data. Fig. 1.2 shows the

dependence on W for 4 Q2 bins. The top graphs (blue) are the inclusive data, the middle graphs

(black) are the model, and the bottom graphs (red) are the ratio of the two, which is the relative

electron efficiency, ǫ(W,Q2), for CLAS (which includes acceptance and luminosity).

For each tagged d(e, e′ps)X event within the spectator proton cuts both W ∗ (proper in-

variant mass; see Eq. ??) and W (nominal invariant mass for a stationary target) were calcu-

lated. The variables W ∗ and Q2 define which bin to increment in the Ntag(W
∗, Q2) table of



3

 / ndf = 725.7 / 152χ

Constant  107± 7.543e+04 

Mean      0.006± 1.915 

Sigma     0.007± 4.647 
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Figure 1.1: Distribution of ∆z, the difference between the reconstructed track position along

the beam direction of electron and spectator proton. The peak shows coincident events between

CLAS and the RTPC. Accidental coincidences appear in the wings.

tagged events. The calculated W and Q2 determine the efficiency to use. Events are accumu-

lated by adding 1/ǫ(W,Q2) to the (W ∗, Q2) bin in the tagged table. The corrected ratio of

tagged/untagged counts (with the proper subtraction of accidental backgrounds) becomes:

Rcorr =

Ntag(W ∗,Q2)
∑

i=1

1

ǫi(W,Q2)
−Rbg

Nbg(W
∗,Q2)

∑

j=1

1

ǫj(W,Q2)

Nuntag(W,Q2)
∑

k=1

1

ǫk(W,Q2)

(1.1)

In this way, we properly account for the fact that there are several bins in W that contribute to a

givenW ∗ bin. Consequently, Rcorr for an invariant-mass bin [w1, w2] contains all tagged events

with w1 <= W ∗ < w2 in the numerator and all inclusive events with w1 <= W < w2 in the

denominator. In other words, the true invariant mass is used for numerator and denominator.
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Figure 1.2: The total inclusive electron scattering counts for deuterium (top row), the total

radiated deuteron cross section model provided by P. Bosted [5] and E. Christy [4] (middle

row) and the ratio of data to model. The plots are all versus invariant mass, W . Each column

corresponds to a different Q2 bin (only the Ebeam = 4 GeV data are shown).

The fall-off at high W for the largest Q2 value is due to the z and θ cut.
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This treatment does not account for the efficiency of the RTPC. J. Zhang’s GEANT4 sim-

ulation of the RTPC provides us with an acceptance value that is a function of W ∗, Q2, and

the spectator kinematics ps and θpq (the angle between the spectator proton and the direction of

momentum transfer). The acceptance is nearly flat except near the kinematic endpoints. How-

ever, because of the difficulty in simulating low-energy ionization within an environment with

intense background, the overall RTPC efficiency from the simulation remained uncertain. Con-

sequently, we have devised a way to correct for the RTPC efficiency by normalizing our ratio of

tagged/untagged events to the world’s cross section ratio data in a kinematic region where σn

can be extracted from deuteron data without a large dependence on model corrections. We have

chosen the DIS region at x = 0.35, W > 2.0 GeV and Q2 > 1.0 GeV2. The normalization,

simply referred to from now on as n, is found to be n = 1/0.02535 ± 3.37%, where the error

corresponds to the rms variation of n for the multiple Q2 bins. This was the average value of

n obtained from an analysis of the Ebeam = 4.223 and 5.262 GeV data sets. Fig. 1.3 suggests

that n may have a slight Q2 dependence, but it appears to be small and can be added into the

systematic error on the tagged/untagged ratio as a 5% normalization error.

1.2.3 Pion and Charge Symmetric Background Contamination

We have made corrections for pion background and pair symmetric contamination using the

CLAS EG1B parameterizations of N. Guler [?]. We assume that the EG1B π−/e− and e+/e−

ratios are similar to those of the BoNuS experiment. We use N. Guler’s routine to calculate

the amount of contamination for each beam energy. We interpolate to our beam energies and

use a weighted average of the two ratios rNH3
and rND3

, for ammonia and deuterated ammonia

targets that allows us to extract ratios for the neutron and deuteron. The superscript X represents

either π− or e+ events, depending on which background we’re interested in. The quantity σXt

stands for the probability of detecting particle X emerging from target t.

The 10 protons and 8 neutrons in NH3 and the 10 protons and 11 neutrons in ND3 lead to

the following definitions:

rNH3
≡
σXNH3

σeNH3

=
10σXp + 8σXn
10σep + 8σen

, (1.2)
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Figure 1.4: The correction to the tagged/untagged ratio due to π− contamination.

rND3
≡
σXND3

σeND3

=
10σXp + 11σXn
10σep + 11σen

. (1.3)

For the BoNuS case, we are interested in the contamination ratios for a neutron target (rn), a

deuteron target (rd), or a proton target (rp). We use the estimation here that σn inside a nucleus

equals σn for a free neutron. Now we make the following definitions:

rn ≡
σXn
σen

, rp ≡
σXp
σep

(1.4)

rd ≡
σXd
σed

=
σXn + σXp
σen + σep

=
Rrn + rp
R+ 1

(1.5)

We’ve defined R = σen/σ
e
p and we use the value for R from P. Bosted’s published parameteri-

zation of the world’s data ([5] and [4]). We can rewrite Eqs. 1.2 and 1.3 as

rNH3
=

10σXp + 8σXn
(10/R + 8)σen

=
10σXp + 8σXn
(10 + 8R)σep

, (1.6)
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rND3
=

10σXp + 11σXn
(10/R + 11)σen

=
10σXp + 11σXn
(10 + 11R)σep

. (1.7)

The quantities necessary for BoNuS, rn and rp, can be expressed as the following linear com-

binations of the EG1B ratios,

rn =
1

3
(−(10/R + 8)rNH3

+ (10/R + 11)rND3
) (1.8)

rp =
(10

8
−

10

11

)

−1(1

8
(10 + 8R)rNH3

+
1

11
(10 + 11R)rND3

)

(1.9)

Now the correction to the BoNuS measured tagged/untagged count ratio is,

Rraw =
tagged

untagged
=
σn
σd

(1.10)

Rcorr =
(1− rn)σn
(1− rd)σd

= CXRraw (1.11)

where, as before, X = π or e+. The correction factor, CX , extracted from EG1B’s result for

the ratio of π/e is plotted in Fig. 1.4. The correction factor extracted from EG1B’s result for the

ratio of e+/e− is plotted in Fig. 1.5. An attempt was made to estimate just how sensitive the ratio

is to the amount of contamination by multiplying rn and rp by a factor of 10 and recalculating

the correction (Figs. 1.6 and 1.7). The error bars are larger for these figures because they

were run over fewer statistics. Even in the extreme case where the contamination from π−

and electron’s from e+e− pairs is 10 times worse than for the EG1B experiment, it still only

introduces a 5% difference in the tagged/untagged ratio at the worst, and in most cases, is less

than 1%.

1.2.4 Radiative Corrections

Radiative corrections to the tagged/untagged ratios were calculated using the cross section mod-

els of P. Bosted [5] and E. Christy [4] within the formalism of Ref. [6]. Resolution smearing is

included to better describe the measured data. We determined the number of radiation lengths

that a scattered electron sees in the target (0.04 - see Fig. 1.8), and the radiated and Born cross
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Figure 1.5: The correction to the tagged/untagged ratio due to pair symmetric background con-

tamination.
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Figure 1.6: The correction to the tagged/untagged ratio due to π− contamination. The factors

rn and rp extracted from EG1B have both been multiplied by a factor of ten
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Figure 1.7: The correction to the tagged/untagged ratio due to pair symmetric background con-

tamination. The factors rn and rp extracted from EG1B have both been multiplied by a factor

of ten
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Figure 1.8: The simulated radiation length as a function of the radial position where the electron

exits the cylinder defining the RTPC simulation region. The upper plot shows the distribution

of radiation lengths for points around the azimuth, whereas the bottom plot shows the radiation

lengths averaged for points around the azimuth. A typical forward electron travels through

∼0.04 radiation lengths in the target.
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Figure 1.9: The inverse of the super ratio rrc for Ebeam = 4.223 GeV. The curves that start at

higher W correspond to lowest Q2.

sections were generated in the same bins of W and Q2 that we bin our tagged/untagged ra-

tio. The unpolarized cross section models also provide us the fraction of σn,dr coming from the

elastic tail in a particular bin. We took care to avoid regions where this fraction was greater

than 10%. The radiative correction is expressed as a super ratio to minimize systematic errors.

Hence, we can apply a multiplicative correction to the tagged/untagged measurement:

rrc =
σnBorn/σ

n
r

σdBorn/σ
d
r

(1.12)

A sample of the super ratio correction (1/rrc) is plotted in Figs. 1.9 and 1.10 for the 4 and 5

GeV beam energies. The different curves cover different Q2 bins. No radiative corrections are

applied to our data below W = 1.1 GeV because of the difficulty in getting resolution smearing

to work correctly for the neutron elastic peak.
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Figure 1.10: The inverse of the super ratio rrc for Ebeam = 5.262 GeV. The curves that start at

higher W correspond to lowest Q2.
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1.2.5 Structure Function Ratio Extraction

A sample of the untagged and tagged distributions can be seen in Fig. 1.11. Clearly the cal-

culation of the proper invariant mass of the neutron, W ∗, sharpens the quasi-elastic peak and

the resonances begin to take shape as we would expect from inclusive scattering on a free nu-

cleon. Once we have accumulated the corrected tagged/untagged counts in bins of W and Q2

(see Fig. 1.12 for our kinematic coverage), we can go on to our final step of extracting structure

function ratios.

We converted the tagged/untagged ratio, Rcorr, into a ratio of structure functions by apply-

ing all of the multiplicative correction factors. Thus,

Fn
2

F d
2

= (Rcorr)(Ce+)(Cπ)(rrc)(n) (1.13)

in which n is the RTPC efficiency correction found in Sec. 1.2.2, Ce+ and Cπ are the pion

and pair symmetric contamination corrections found by Eq. 1.11, rrc is the radiative correction

super ratio found in Eq. 1.12. This assumes that the R structure function is identical for the

neutron and the deuteron. Because this quantity is not precisely measured, this assumption

feeds into the systematic errors

Using the well-measured and parameterized deuteron to proton structure function ratio,

F d
2 /F

p
2 , we obtain

Fn
2

F p
2

=
(Fn

2

F d
2

)(F d
2

F p
2

)

model
. (1.14)

Multiplying Eq. 1.14 by F p
2(model) provides an extraction of Fn

2 . Also we can further extract a

measurement of d/u, once we have the nucleon structure function ratio, by applying Eq. ??.

Since W ∗ is always less than W there is a steep fall off to the tagged/untagged ratio at the

edge of the experiment’s W acceptance. This is an unavoidable result of the kinematics and can

be removed with a simple Q2-dependent cut on the maximum invariant mass. This cut has been

made on all of the plots using the Ratio Method.
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Figure 1.11: Inclusive scattering on deuterium (black line) representing our untagged data sam-

ple as a function of W and the corresponding tagged sample as a function of the corrected mass

W ∗. The data are normalized so that the area under the curves is equal. Ebeam = 4.223 GeV
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Figure 1.12: The kinematic coverage in invariant mass and momentum transfer for each of the

four BoNuS beam energies.
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Figure 1.13: Fractional systematic errors as a function of x for the deep-inelastic Fn
2 /F

p
2 results.

The total rises from about 1% at low x to about 4% at high x. These errors are obtained by

changing various corrections, redoing the full analysis, and looking at the difference between

the new values as compared to the nominal ones.

1.2.6 Error Estimation

The statistical error on the acceptance corrected counts is simply

√

√

√

√

N
∑

i=1

1

ǫ2i (W,Q
2)

for each

summation in the numerator and denominator, properly propagated through to give the total

statistical error on Rcorr in Eq. 1.1. The systematic error on each of the multipliers in Eq. 1.13

is given in Table 1.1.

The experimental technique used in this analysis has the advantage of canceling out some

typical sources of systematic errors. These errors include, but are not limited to, the EC ID

cut, the trigger efficiency, and CC efficiency. Presumably, the normalization error of 5% could

be reduced at a later date upon the successful completion of the RTPC efficiency Monte Carlo

simulations.

For the Fn
2 /F

p
2 data versus x, we have redone the full analysis (including the overall nor-

malization at x = 0.3) with various changes in our correction factors in order to estimate the

overall systematic errors. Plotted in Fig. 1.13 are the results of this study as a function of x.

The pink squares correspond to increasing the observed spectator momentum by 10 MeV/c.
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Correction Estimated Systematic Explanation

Factor Error (%)

FSI 5.0 The uncertainty coming from the effect of

final state interactions at spectator kinematics. [15]

Target 1.0 The uncertainty coming from the effect of

Fragmentation target fragmentation at spectator kinematics. [13]

Off-Shell 1.0 The uncertainty coming from the effect of

nucleon off-shellness at spectator kinematics. [16]

Assuming our pair symmetric background

Ce+ 1.0 contamination is less than 10 times

than the amount in the EG1B experiment,

Fig. 1.7 shows that amount

of correction to the ratio is less than 1%.

Cπ 1.0 Same argument as above,

only reference Fig. 1.6.

Each value of σb(E,W,Q
2)

rrc 2.0 and σr(E,W,Q
2) for the neutron and

the deuteron has an uncertainty of 1%

leading to a 2% error on the ratio.

n 5.0 The approximate deviation from a flat

normalization as seen in Fig. 1.3.

The error quoted in [5] and [4] on the

F d
2 /F

p
2 4.2 fits to the structure functions is 3% which

leads to an error of 4.2% on our ratio.

Total Error 8.7 After adding all these errors in quadrature.

Table 1.1: The total systematic error on the ratio Fn
2 /F

p
2 . Each error is quoted in percentage of

the ratio and the estimation explanation is found in the last column.
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This corresponds roughly to our momentum resolution, and an incorrect momentum implies

an incorrect correction from W to W ∗. The plot shows the percentage difference between the

extracted Fn
2 /F

p
2 in this case, compared to the nominal values. The orange triangles corre-

spond to changing each observed spectator angle θpq by a random Gaussian-distributed offset

with σ = 5◦. The blue X’s correspond to a similar modification in the azimuthal angle φ.

The purple stars correspond to adding 10% to the CLAS acceptance values ǫ(W,Q2); this is

an overestimate, since the average deviations between the model and data for the deuteron is

only 3%. The red circles correspond to cutting the radiative corrections in half. The green +’s

correspond to multiplying the pion correction by a factor of two. The blue dots correspond to

multiplying the pair-symmetric background by a factor of two. The olive bars correspond to

increasing the subtracted background by 20%. The blue diamonds correspond to all of these

effects added in quadrature. The solid black line is an exponential fit to the total of the form

0.0022 exp 4.8231x. Because of the normalization condition, the point near x = 0.3 remains

close to zero in all cases. The total error near x = 0.3 is an interpolation from the values on

either side so that a smooth fit to these data is possible. The rise in uncertainty at high x is

expected because here the nuclear corrections from the spectator tagging are large. This error

is dominated by uncertainties in the spectator momentum and radiative corrections (the later of

which depends on the accuracy of the models for the neutron and the deuteron in this region.

1.2.7 F n
2 /F

d
2 , F n

2 /F
p
2 and F n

2

This section contains the graphs of the results of the extraction of Fn
2 /F

d
2 , Fn

2 /F
p
2 , Fn

2 from

the measured and corrected tagged/untagged ratio following the prescription of Eq. 1.13. The

group of graphs from Fig. 1.14 through 1.31 contain the structure function ratios and Fn
2 as

a function of W ∗ and x∗, for bins in Q2 where there were enough counts to be statistically

significant. The parameterization of Refs. [5] and [4] (a fit to previous data that all have nuclear

model uncertainties) is shown as well.

The parameterization and the data are in rough agreement, with differences expected be-

cause these data are the first direct measurements of Fn
2 without nuclear model-dependence.
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The slight differences in the observed and model locations of the ∆ resonance could be caused

by: 1) the model being quoted at a fixed average Q2, whereas the average Q2 in a bin varying

slightly across the spectrum; 2) the ∆ riding on a steeply rising but poorly modeled backgroud

that shifts the peak; and 3) a second-order effect from the interplay between tagged corrections,

which sharpen the ∆ peak, and a rapidly changing acceptance in this region, which, if slightly

off, can shift a peak. Our systematic errors are large enough to encompass all of this.
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Figure 1.14: Fn
2 /F

d
2 , Fn

2 /F
p
2 , and Fn

2 versus W ∗ and x∗ at 0.65 < Q2 < 0.77 GeV2, Ebeam =
4.223 GeV. The neutron and proton lines are from the phenomenological model of Refs. [5]

and [4].
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Figure 1.15: Same as Fig. 1.14 but at 0.77 < Q2 < 0.92 GeV2.
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Figure 1.16: Same as Fig. 1.14 but at 0.92 < Q2 < 1.10 GeV2.
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Figure 1.17: Same as Fig. 1.14 but at 1.10 < Q2 < 1.31 GeV2.
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Figure 1.18: Same as Fig. 1.14 but at 1.31 < Q2 < 1.56 GeV2.
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Figure 1.19: Same as Fig. 1.14 but at 1.56 < Q2 < 1.87 GeV2.
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Figure 1.20: Same as Fig. 1.14 but at 1.87 < Q2 < 2.23 GeV2.
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Figure 1.21: Same as Fig. 1.14 but at 2.23 < Q2 < 2.66 GeV2.
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Figure 1.22: Same as Fig. 1.14 but at 2.66 < Q2 < 3.17 GeV2.
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Figure 1.23: Fn
2 /F

d
2 , Fn

2 /F
p
2 , and Fn

2 versus W ∗ and x∗ at 0.92 < Q2 < 1.10 GeV2, Ebeam =
5.262 GeV. The neutron and proton lines are from the phenomenological model of Refs. [5]

and [4].
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Figure 1.24: Same as Fig. 1.23 but at 1.10 < Q2 < 1.31 GeV2.
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Figure 1.25: Same as Fig. 1.23 but at 1.31 < Q2 < 1.56 GeV2.
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Figure 1.26: Same as Fig. 1.23 but at 1.56 < Q2 < 1.87 GeV2.
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Figure 1.27: Same as Fig. 1.23 but at 1.87 < Q2 < 2.23 GeV2.
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Figure 1.28: Same as Fig. 1.23 but at 2.23 < Q2 < 2.66 GeV2.
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Figure 1.29: Same as Fig. 1.23 but at 2.66 < Q2 < 3.17 GeV2.
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Figure 1.30: Same as Fig. 1.23 but at 3.17 < Q2 < 3.79 GeV2.
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Figure 1.31: Same as Fig. 1.23 but at 3.79 < Q2 < 4.52 GeV2.
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1.3 The MC Method

In order to understand better the off-shell and final-state-interaction corrections to the tagged

data and to check systematic errors, we have performed a second analysis of the BoNuS data

set using the tagged events compared to a plane-wave impulse approximation (PWIA) spectator

model. Deviations of the data from the model indicate the magnitude and kinematic dependence

of off-shell corrections to the structure function F eff
2n and the importance of rescattering in the

final state as well as target fragmentation.

1.3.1 Generating events

Simulated events used in this analysis were generated using a Plain Wave Impulse Approxima-

tion (PWIA) generator for inclusive electron scattering on moving nucleons inside deuterium.

This generator was developed and used for the first spectator tagging experiment with CLAS,

e6 [1]. The generator is based on the RCSLACPOL code developed at SLAC [2]. It uses

up-to-date nucleon form factors [3] and structure functions [4, 5] as well as the Mo-Tsai [6]

prescription to calculate both Born and radiated cross sections for inclusive electron scattering

on a single nucleon. These cross sections are then transformed (obeying proper relativistic kine-

matics) from the nucleon rest system into the lab, using the Paris wave function [7] to describe

the momentum distribution of nucleons inside deuterium. This generator works in the “extreme

spectator approximation” and does not assume any interaction of the final state debris of the

struck nucleon with the spectator, which escapes with its initial momentum, nor any off-shell or

EMC-type effects on the nucleon structure functions.

The three purposes for which we needed simulated events in the MC analysis are: sub-

tracting the radiative elastic tail from the inelastic event distribution, accounting for detector

acceptance and resolution, and comparing the inclusive experimental data with the MC predic-

tion to derive an “empirical electron efficiency”. To satisfy these needs, three kinds of events

were generated:

1. simulation of quasi-elastic scattering of electrons off the neutron inside deuterium in the
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plane wave spectator approximation including electromagnetic radiative effects,

2. simulation of inelastic scattering off the neutron in the same framework (with radiative

effects),

3. Fully inclusive scattering d(e, e′)X off the deuteron (with radiative effects).

Events with quasi-elastic scattering of the electron off a moving neutron in the spectator

picture are produced as follows. Initially, the electron is assigned random kinematics within the

boundaries (Q2 and ν) defined in the configuration file. In the spectator picture, the energy and

momentum of the off-shell bound nucleon (EN and ~pN ) are related to the spectator nucleon

momentum ~ps as

EN =MD −
√

M2
p + p2s (1.15a)

~pN = −~ps, (1.15b)

and the target nucleon (off-shell) mass is

M∗ =

√

(MD −
√

M2
p + p2s)

2 − p2s. (1.16)

The initial momentum of the struck nucleon is distributed according to

P (~pN ) = |ψ(~pN )|2, (1.17)

where ψ(~pN ) is the Paris deuteron wave function [8, 7] rescaled using light-cone formalism

[9]. The events were then generated according to the elastic cross-section given by the usual

Rosenbluth formula in the rest frame of the target nucleon, with the “cross section type” form

factors from Arrington et al. [3]. The elastic radiative tail is calculated using the full prescription

of Mo and Tsai [6]. The reduction of the quasi-elastic peak itself due to the internal radiation is

given by
(

dσ

dΩ

)

rad

= eδ
(

dσ

dΩ

)

Born

, (1.18)
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where the expression for the parameter δ is given in [6]. The event generator also simulated

external radiative energy loss before scattering due to material in the beam.

The inelastic data were generated similarly to the quasi-elastic data. The cross-section was

evaluated using

dσ

dE′ dΩ
=

(

dσ

dΩ

)

Mott

2MxF2(x,Q
2)

ǫQ2

1 + ǫR(x,Q2)

1 +R(x,Q2)
, (1.19)

where R = σL/σT , σL and σT being the longitudinal and transverse cross-sections. The polar-

ization of the virtual photon, ǫ, is given by

1

ǫ
= 1 + 2

(

1 +
Q2

4M2x2

)

tan2
θ

2
. (1.20)

The proton and neutron structure functions F2 and R were taken from fits by Bosted et al. [4, 5]

to world proton and deuteron data, including data from Jefferson Lab’s Hall B and C. The

fit is constrained to merge with the New Muon Collaboration (NMC) fit to SLAC, BSDMS

and NMC data on the proton and deuteron structure functions [10] at large W . Radiative effects

were simulated using the output of the SLACPOLRAD program [2]. SLACPOLRAD calculates

the ratio of radiated to Born (unradiated) cross-section for DIS without the elastic tail. These

ratios were applied to scale the generated unradiated cross-section.

The fully inclusive events were generated by adding quasi-elastic and inelastic events from

both the neutron and the proton (integrated over all spectator momenta), plus the radiative elastic

tail from D(e, e′)D. A small empirical correction was applied to bring the simulated cross

section for D(e, e′) into better agreement with the most recent data from Hall C (not published

yet - M.E. Christy, private communication).

1.3.2 Detector simulation

The generated events were run through a full simulation of the experimental setup, including

external radiation losses. The target and RTPC part of the setup were simulated in full detail
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using a GEANT4-based [11] simulation package written for our experiment (the same simula-

tion that was used for the RTPC momentum corrections, see section ??). The standard CLAS

part of the setup was simulated using GSIM. First, particle paths through the RTPC were simu-

lated. The output information (position and momentum vectors of all particles at the boundary)

was written to files which served as input for the GSIM package. To simulate inefficiencies of

the CLAS detector, the output of GSIM was fed to the GSIM Post Processing package (GPP),

which accounted for such things as finite resolution of DC and SC, broken DC wires, etc.

After the generated events went through the simulated detectors, we obtained files with

simulated detector responses for the generated events. Finally, these files were processed by

the usual data processing program (RECSIS), the same one that was used for processing exper-

imental events. All the same cuts were applied as for the real data, except for the CC and EC

cuts, since the CC and EC response were difficult to simulate accurately (see below). Since the

simulated detector in GEANT4/GSIM is “ideal”, many of the empirical corrections we had to

apply to our data where not needed and therefore left out for the simulated data analysis. In

particular, only the first of the RTPC momentum corrections was used (see ??); no radius of

curvature rescaling was applied. Similarly, the full CLAS momentum correction was not used;

only the energy loss correction was applied. No accidental background subtraction was applied

to the simulated data since they did not contain any background.

The outputs of RECSIS for experimental and simulated events were directly compared and

used in the analysis. Figures 1.32 and 1.33 show plots of the W and W ∗ distributions for

quasi-elastic 4 and 5 GeV beam energy simulations, respectively, as examples of simulation

results. The same distributions for inelastic simulations can be found in Figs. 1.34 and 1.35.

All simulated events that passed the experimental cuts were filled into an array of structures

identical to those for the experimental data (see below) for further processing.

1.3.3 Empirical Efficiency Correction

As stated above, the simulated data analysis did not use the standard CC and EC cuts since the

acceptance/calibration of these detectors was not fully understood. In particular, the hardware
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Figure 1.32: The W and W ∗ distributions of the quasi-elastic simulation for the 4 GeV data.
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Figure 1.33: TheW andW ∗distributions of the quasi-elastic simulation for 5 GeV beam energy.
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Figure 1.34: The W and W ∗ distributions of the inelastic simulation for the 4 GeV data.
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Figure 1.35: The W and W ∗distributions of the inelastic simulation for 5 GeV beam energy.
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threshold for the EC trigger input was set rather high and varied throughout the experiment.

The CC was never properly calibrated and also had a rather high threshold. Instead of trying to

simulate the efficiency of these detectors and deduce the corresponding electron ID cuts (as well

as the trigger and overall tracking efficiency), we used our simulation of fully inclusive D(e, e′)

data in comparison with the same kind of data from the experiment to derive an “empirical

efficiency correction”. The fully inclusive events (both data and simulation) were binned in

trigger electron energy and polar scattering angle, E′ and θ, (ignoring any spectator tracks

in the RTPC). The inclusive simulation did not have any CC and EC cuts, either, while all

the usual electron cuts from the tagged analysis were applied to the inclusive experimental

data. Corrections for contamination of the experimental data by pair-symmetric (“e+/e−”) and

mis-identified pion background were applied as described in Section 1.2.3. The ratio of the

distribution of scattering angles and energies of the inclusive experimental data over that of the

simulated electrons yields the “empirical electron efficiency” as a function of scattering angle

and energy. This efficiency was used in the main analysis by weighing simulated counts and

thus compensating our lack of understanding of the detector efficiency. Because the simulation

of fully inclusive electrons is based on the same generator, cross section equations and detector

simulation as the tagged data, common factors relating input structure functions and measured

electron distributions cancel out in this procedure, much reducing systematic uncertainties on

the simulation.

Figure 1.36 shows the results of this procedure in a one-dimensional projection. The top

panel shows the experimental data binned vs. W , while the second panel shows the simulated

inclusive data, and the third panel shows both curves overlaid after proper normalization. This

is our worst case, since the 2 GeV data were taken during a time of the run when we were still

changing EC and CC thresholds. Since no cuts on EC or CC are contained in the simulation, it

does not fall off as quickly at high W (low E′) as the data. The ratio of the red over the blue

curve would then correspond to our “empirical efficiency” which can correct the tagged data for

this discrepancy. Figures 1.37,1.38 repeat the lower panel of Fig. 1.36 for the other two beam

energies.
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Figure 1.36: Inclusive W distributions for experimental (red) and simulated (blue) data. Sim-

ulated data were scaled by a factor of 13.2 to account for the difference between experimental

and simulated luminosity. The beam energy is 2.140 GeV.
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Figure 1.37: Same as Fig. 1.36 for a beam energy of 4.2 GeV.

Figure 1.38: Same as Fig. 1.36 for a beam energy of 5.3 GeV.
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1.3.4 Background Subtraction

Events were considered to be good electron - RTPC proton coincidences if the z-distance be-

tween the reconstructed vertices of those two particles, ∆z = zel − zpr was less than 15 mm.

Unfortunately, there were events with random coincidences, in which the trigger electron and

an unrelated RTPC proton were within the aforementioned 15 mm. This accidental background

needed to be estimated.

Figure 1.39: A representative plot of random coincidences ∆z distribution for 5 GeV data. The

shown plot is for Q2 between 1.10 and 2.23 (GeV/c)2, W ∗ between 1.35 and 1.60 GeV , and

ps between 70 and 85 MeV/c. Gaps between 15 and 20 mm are present, since events in which

∆z was in that range belonged neither to the area under the peak nor to “wings” (see text for

the explanation), and thus were ignored.

Random coincidences were emulated by taking the trigger electron from one event and

the RTPC proton from another. Thus, they were guaranteed not to come from a real physics

event. Using information from the chosen electron-proton random pair, all quantities in which

real data were binned, Q2, W ∗, x∗, and cos(θpq), were calculated, and the coincidence was
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assigned to the corresponding bin. If the distance between the vertices of the electron and the

proton, ∆z, was less than 15 mm, the event would emulate a random coincidence under the

signal. If ∆z was larger than 20 mm, this was considered a “wing” event, that could not be

confused with the signal. Then, after going over all the events, we could form a ratio of the

number of coincidences under the signal and the number of “wing” events for each of our bins.

A sample of the distribution of random coincidences is shown in Fig. 1.39; one can clearly see

the expected triangular shape (see Section 1.2.1).

The following Figs. 1.40,1.41 show the (slight) variation of these distributions with selected

kinematic variables, cos(θpq) and W . Using both wings averaged out any small distortions

in the triangular shape, leading to a ratio for the area under the peak to the integrated wings,

Rbg, which did not vary significantly with any kinematic variable and fluctuated (statistically)

between 0.23 and 0.25

All experimental coincidences between electrons and RTPC protons were separated into

the same categories, “wing” events (those with |∆z| > 20 mm) and “signal” (peak) events

(those with |∆z| < 15 mm). Then, the number of “wing” events was converted to the number

of random coincidences under the peak by multiplying it by the aforementioned ratio Rbg of

random under-the-peak to random “wing” events. The resulting accidental background events

were subtracted from the events within the peak for each kinematic bin.

The resulting fraction of background events ranged from somewhat below 10% to over

20%, depending on the kinematic bin. Figure 1.42 shows, for example, the dependence of the

background fraction on the invariant mass W ∗ of the final state. The background is mostly flat

around 17%, but decreases in the region of narrow peaks (most prominently in the region of the

Delta, W = 1.23 GeV) where the signal is larger, and increases at the edges of the kinematic

acceptance, where “real” coincidences are rarer.

In addition, backgrounds due to pions misidentified as electrons (passing all cuts) as well as

pair-symmetric contamination of the electron sample were also corrected for in similar fashion

as discussed for the ratio method. (Section 1.2).
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Figure 1.40: Similar to Fig. 1.39. The ∆z distributions are shown for three different bins in

the angle cos θpq. Careful inspection shows that for backward angles (top panel) more random

protons are at larger z than the electron vertex (left “wing”) since the “backward” acceptance of

the RTPC is of course larger for protons coming from more downstream parts of the target. The

situation is reversed for forward angles (bottom panel). However, averaging over both wings

gives very nearly the same ratio to the central peak, leaving Rbg unchanged.
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Figure 1.41: Similar to Figs. 1.39,1.40. The ∆z distributions are shown for six different bins in

the invariant final state mass W ∗. Practically no systematic differences are visible.
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Figure 1.42: Fraction of accidental coincidence background inside the cut |∆z < 15 mm| as a

function of the invariant final state mass W ∗. See text for explanation.
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1.3.5 Binning

A loop over all experimental events that passed the cuts (see section ??) was performed. If an

event was tagged, the W ∗, Q2, cos(θpq), and spectator momentum bins corresponding to the

values recorded in the structure were found. Binning in W ∗ is performed twice: once with 6

bins for studying the dependence of our results on other variables for events belonging to each

of these 6 bins, and once with 90 bins, for plotting structure functions vs W ∗. In the same

fashion 2 possible sets of cos(θpq) bins were made: 3 bins for making plots vs. other variables,

and 10 bins for making plots with cos θpq plotted on the horizontal axis. In detail, we use the

following bins:

• cos(θpq) bins:

– “Small” bins: 10 equal bins between -1 and 1.

– “Big” bins: 3 bins, lower bounds being: -1.0, -0.2, 0.2, upper bounds being -0.2,

0.2, 1.0.

• Spectator momentum bins - 4 bins, lower bounds: 0.07, 0.085, 0.1, 0.12 GeV; upper

bounds: 0.085, 0.1, 0.12, 0.15 GeV.

• Q2 bins:

– For 2 GeV beam energy: 3 bins, lower bounds: 0.2227, 0.4524, 0.7697 GeV/c;

upper bounds: 0.4524, 0.7697, 1.0969 GeV/c.

– For 4 GeV beam energy: 3 bins, lower bounds: 0.7697, 1.0969, 2.2277 GeV/c;

upper bounds: 1.0969, 2.2277, 4.5243 GeV/c.

– For 5 GeV beam energy: 2 bins, lower bounds: 1.0969, 2.2277 GeV/c; upper

bounds: 2.2277, 4.5243 GeV/c.

• W ∗ bins:

– “Big” bins, for plotting other variables - 6 bins, lower bounds: 0.88, 1.00, 1.35,

1.60, 1.85, 2.20 GeV; upper bounds: 1.00, 1.35, 1.60, 1.85, 2.20, 2.68 GeV.
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– “Small” bins, for horizontal axis - 90 bins of width 20 MeV equally spaced between

0.88 and 2.68 GeV.

Alternatively to binning in small bins of W ∗, we also binned all data in bins of

x∗ =
Q2

2EN · ν + 2~q · ~ps
(1.21)

to extract the functional dependence of F2n on x∗. 40 equidistant bins between 0 and 1 were

used.

As a result of the binning procedure four arrays are filled: tag counts exp - “small” bins in

cos(θpq), “big” bins in W ∗; tag byreg exp - “big” W ∗ bin, “big” cos(θpq) bin, tag wplots exp -

“small” W ∗ bins, “big” cos(θpq) bins, and tag xplots exp - small x∗ bins, “big” cos(θpq) bins.

All backgrounds are evaluated bin by bin and subtracted from the counts in all of them.

The same arrays were replicated once for the simulated inelastic data and once again for the

simulated quasi-elastic data (with radiative tail) and filled accordingly. All simulated counts

were multiplied with the trigger efficiency (that also incorporated the pion and charge symmetric

contamination correction) and the empirical RTPC efficiency.

1.3.6 Extraction of F2n

As a first step, the quasi-elastic radiative tail was subtracted from the experimental data as

follows: The quasi-elastic simulation was cross-normalized to the data in the vicinity of the

quasi-elastic peak, 0.88 < W ∗ < 1.00 GeV, for each bin in Q2, ps and cos(θpq) and then

subtracted bin-by-bin from the data at higher W ∗. The cross-normalization factors are denoted

as ratio below. Fig. 1.43 shows the 5.3 GeV W ∗ spectrum for four bins in ps at backward

angles and Q2 = 1.66 GeV2. The red curves are the simulated tagged quasi-elastic events,

normalized to the measured tagged events at the elastic peak.

The simulated inelastic tagged scattering events were then cross-normalized with the (background-

and radiative tail-corrected) experimental data. The cross-normalization factors were found by

summing experimental and simulated counts over a specific region in W ∗, Q2 and cos θpq,
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where according to the theoretical expectations the spectator picture should hold and nuclear

uncertainties in the fits for F2n used by the generator are expected to be small. These regions

were selected as follows:

• For 2.1 GeV beam energy: 1.2 < W ∗ < 1.34 GeV, 0.7697 < Q2 < 1.0969 GeV2 and

−1.0 < cos(θpq) < −0.2.

• For 4.2 GeV beam energy: 2.0 < W ∗ < 2.2 GeV, 0.7697 < Q2 < 1.0969 GeV2, and

−1.0 < cos(θpq) < −0.2.

• For 5 GeV beam energy: 2.0 < W ∗ < 2.2 GeV, 1.0969 < Q<2.2277 GeV2, and

−1.0 < cos(θpq) < −0.2.

These factors were found and applied separately for each spectator momentum bin, because

the RTPC efficiency as a function of momentum is not completely understood. Therefore, they

contain an empirical correction for the (ps–dependent) inefficiency of the RTPC.

In the final step, the ratio of the experimental number of (background-corrected) counts to

the normalized, simulated inelastic counts is formed in each bin of interest. If the cross section

model used in the generator were a perfect description of the underlying physics, this ratio

would be unity (within statistical and systematic uncertainties) in every bin, since we simulated

all steps from (Born) cross section to (radiated) count rates and accounted for any remaining

detection inefficiency by using both the empirical electron efficiency and (ps–dependent) RTPC

efficiency corrections. Any significant deviation from unity would indicate that some ingredient

in the cross section formula, Eq. 1.19, differs from the ideal spectator model in the bin in

question. Therefore, the ratio R(data/MC) can be interpreted as

R(data/MC) =
F eff
2n (W ∗, Q2, ~ps)

Fmodel
2n (W,Q2)

, (1.22)

where the “effective structure function” F eff
2n (W ∗, Q2, ~ps) also accounts for corrections to the

PWIA spectator picture from FSI and target fragmentation. By multiplying the ratio with the

value Fmodel
2n evaluated at the bin center, we can get the (bin-centered) value for the effective
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Figure 1.43: Raw tagged data (black squares), tagged data with subtracted accidental back-

ground (blue crosses), and simulated, cross-normalized elastic events (red circles). Four typical

ps bins are shown for 〈Q2〉 = 1.66 GeV2 and 〈cos θpq〉 = −0.60. The beam energy is 5.262

GeV.
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structure function F eff
2n (W ∗, Q2, ~ps). This quantity is what we are ultimately interested in—it

contains both the deviations from the spectator picture (through the dependence of F eff
2n on ~ps

and θpq) and the “true” neutron structure function, where the spectator picture is accurate.

1.3.7 Systematic errors

The systematic errors for the MC Method are discussed below.

• E
′ − θ dependent acceptance and efficiency error. This is the uncertainty on the esti-

mate of the detection efficiency of the CLAS trigger electrons (see above). The efficiency

of the detection was found as a function of E′, the energy of the scattered electron, and

θ, the electron scattering angle. By performing a two-dimensional bi-linear fit of the effi-

ciency as a function of these two variables, and estimating point-to-point fluctuations in

the efficiency, the E′− θ-dependent uncertainty was found to be about 8.5%. This means

that the value of the experimental to simulated data ratio for a given bin is assigned an

additional error equal to the value of the ratio multiplied by 0.085 due to the uncertainty

in the trigger electron detection efficiency.

• F2n model dependence. The simulations used in this research utilized an input model

F2n. The systematic error due to this model dependence was estimated to be 5% at the

normalization point (where the spectator picture should hold and nuclear corrections are

minor).

• Monte-Carlo simulations. The ratio of the experimental to the simulated data was found

for each bin as

ratio =
exp− bg − elas tail

inelsimcount
, (1.23)

where exp is the experimental data count for the bin, bg is the accidental background,

elas tail is the normalized elastic tail found using simulated data, inelsimcount is the

number of counts in this bin from the simulated data multiplied by the trigger electron

detection efficiency and cross-normalized with the experimental data count. The error on
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this quantity due to the uncertainty in Monte-Carlo (MC) counts can be found by chain

differentiation as

∆ratioMCcount =
∂(ratio)

∂(MCcount)
∆MCcount, (1.24)

where ∆ratioMCcount is the uncertainty on the ratio due to the MC count uncertainty

and MCcount is the number of MC counts in the bin. The uncertainty found consisted

of two parts:

1. Monte-Carlo statistics. The error due to the simulation statistics was found for

each bin for the experiment to simulation ratio according to

error2 =

(

elsimcount

inelsimcount

)2

/pure elas count+
ratio2

pure inelas count
, (1.25)

where elsimcount is the cross-normalized with experiment number of events in

this bin from the elastic simulation, inelsimcount is the cross-normalized with

experiment number of events in this bin from the inelastic simulation, ratio is the

aforementioned experiment to simulation ratio for the bin, pure elas count is the

number of events from the elastic simulation for this bin, and pure inelas count is

the number of events from the inelastic simulation for this bin.

2. Monte-Carlo systematics. A systematic error due to the simulation was found as

error2 =

(

0.1 elsimcount

inelsimcount

)2

, (1.26)

where elsimcount is the cross-normalized with experiment number of events in

this bin from the elastic simulation, inelsimcount is the cross-normalized with

experiment number of events in this bin from the inelastic simulation. The factor of

0.1 is the potential cross-normalization error between quasi-elastic simulation and

experimental data, due to a somewhat different shape in W ∗ of the corresponding

quasi-elastic peaks (see figure 1.43).
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• Charge-symmetric and pion contamination. Even though careful analysis was per-

formed to separate trigger electrons from negative pions, the latter could still be counted

in as good electrons. Moreover, created e+−e− pairs produced electrons that were hard to

distinguish from trigger electrons. These sample contamination sources were accounted

for and corrected as discussed in section 1.2.3. Still, a systematic error of the correction

needs to be studied.

To extract systematic uncertainties due to this source, ratios of the experimental to sim-

ulated data (see section 1.3.6) were found in two different ways. First, the “contamina-

tion” correction was applied to the inclusive data used to extract the trigger efficiency

correction, and no “contamination” correction was applied to the tagged data themselves

directly (only via the trigger efficiency correction). Second, no “contamination” correc-

tion was applied to the inclusive data, but it was rather applied directly to the tagged data.

The difference between the two results was the systematic uncertainty on the ratio due to

the “contamination” correction.

• Choice of the inelastic simulation cross-normalization region. As mentioned in sec-

tion 1.3.6, the simulated inelastic tagged events were cross-normalized with the experi-

mental data. For this, a specific region in W ∗ was chosen. The effect of the region on the

final result had to be studied. For this, alternative normalization factors were obtained by

multiplying the usual normalization factors by 0.95 (5% variation), and the calculation

for the ratios was repeated using the alternative factors. The difference between the final

results for the ratios obtained using these cross-normalization regions and usual ones (see

section 1.3.6) was the systematic uncertainty due to the choice of the inelastic simulation

cross-normalization region.

The systematic errors due to the aforementioned factors were added in quadrature, and the

square root of this sum is shown on the plots as a point to point systematic error for the ratios

of the experimental to simulated data. To convert these values to systematic errors of the F2n

structure function, they are multiplied by the value of model F2n in the bin for which the error
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is calculated.

1.3.8 Sensitivity to Spectator Momentum

The main goal of this parallel analysis (MC method) has been to find the effective neutron

structure function F eff
2n as a function of ps and θpq in different bins of W ∗ and Q2, to check the

validity of different FSI theories and the range of validity of the PWIA spectator picture in both

spectator angle and momentum. Examples of our data are shown in figures 1.44 - 1.47. In the

following, we discuss the dependence of ratios and extracted effective structure functions on ps

and cos θpq.

Fig. 1.44 shows the ratio of the experimental data with accidental background and elastic

radiative tail subtracted to the simulated PWIA spectator model. The panels correspond to bins

in spectator momentum with ps = 0.078, 0.93, 0.11 and 0.135 GeV/c. Only backward-going

spectators are included. At low ps the ratio is close to unity for all W ∗ (except in the threshold

region). Deviations at W ∗ = 1.25 and 1.50 GeV may reflect an underestimate of resonance

strength in the model used in the simulation. With increasing ps the deviations from unity grow

substantially, indicating some combination of off-shell and FSI effects. The rise at low W ∗ is

a remnant of the elastic tail, which may not have been completely subtracted (this could also

be due to an incompletely simulated resolution effect, where the simulated data fall off more

sharply as W ∗ → 1.08, than the real ones).

Figure 1.45 shows F eff
2n , which is produced by multiplying the ratio in Fig. 1.44 with Fmodel

2n .

Here one can see the increasing deviation of the data from the model as ps increases. This trend

is consistent with the calculations of Ref. [12]) and the target fragmentation and FSI models of

Refs. [13, 14] and [15]).

Fig. 1.46 shows the tagged event rate as a function of cos θpq, normalized by the Monte

Carlo expectations from a pure spectator model. Deviations from unity indicate the effects

of final-state interactions and off-shell effects. These data are at moderate Q2 of 1.66 GeV2,

and W ∗ = 1.73 near the third resonance region. For ps = 0.078 and 0.093 GeV, there is

little indication of deviations from the spectator picture, even at forward angles. However, for
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ps = 0.11 and 0.135 GeV, still relatively low momenta, one finds a depletion perpendicular to

the momentum transfer, which is a signature of final-state interactions, since the most likely np

interaction is a grazing blow as the neutron moves largely in the direction of momentum transfer.

This plot confirms that by limiting the spectator momenta to the range 0.07 < ps < 0.1 GeV,

especially with a cut on backward angles, one observes a quasi-free neutron with small off-shell

and final-state interaction corrections.

Fig. 1.47 shows F2n as a function of x∗, again forQ2 = 1.66 GeV2, but for backward-going

spectators with −1 < cos θpq < −0.2. There are only minor differences in F2n as ps increases

from about 0.078 GeV (upper left) to 0.135 GeV (lower right). Especially in the deep-inelastic

region, W ∗ > 2, there is no statistically significant evolution of the structure function with ps.

Hence, we can be confident that data with 0.07 < ps < 0.10 are not noticeably marred by either

final-state interactions or off-shell effects.

1.3.9 Conclusions on the MC Analysis

The results shown tend to agree with the target fragmentation model of [13, 14] and the final

state interaction model of [15]. Our data show an enhancement over PWIA in the target frag-

mentation region (in accordance with [13, 14]) and dip in the vicinity of θpq = 90◦ (in accordance

with [15]).

The PWIA spectator model works well for the lowest two spectator momentum bins (ps=70. . .100

MeV/c), as expected from the models of [16, 17] and [18, 19] especially in the backward θpq

region, where deviations from PWIA are typically below 5–10%. The exceptions are the res-

onance peaks for the regions of W ∗ ∼ 1.25 GeV and W ∗ ∼ 1.5 GeV, where a resonance

structure was evidently not described properly in the used model F2n, and the deviation is close

to 20%.

The resonance-like structure present in the ratio of the experimental data to the simulated

data shows that our model for F2n may underestimate the resonant contribution at some values

of W ∗ and Q2. On the other hand, the agreement between data and model for the 2 highest

Q2 bins and 5 GeV beam energy, over the whole range in W ∗/x∗, is quite good in the region
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where the spectator picture should work (ps between 0.07 and 0.085 GeV and cos(θpq) between

-1 and -0.2) (see figure 1.48). This confirms that in the DIS region, the F2n model provides a

good description of a (nearly) free neutron up to x∗ ≈ 0.6, within our systematic errors of 10

- 15%. This includes the systematic dependence on Q2 for 5.254 GeV beam energy data (see

figure 1.48). This dependence indicates that, for the neutron, the approach towards a universal

(scaling) curve of F2n(x
∗) (as expected from duality) does not yet seem to set in at the relatively

low Q2 where it was seen to hold in the proton case.

1.4 F n
2 and F n

2 /F
p
2 Versus x

Fig. 1.49 shows a comparison of F2n versus x∗ obtained with the same data set, but the two

alternative analysis methods. These points are summed over Q2 for W > 1.8 GeV. They agree

reasonably well with each other, and their deviations from each other can give an estimate of

the differing systematic errors in the two methods.

Fig. 1.50 shows the final structure function ratio F2n/F2p versus x∗ from the BoNuS exper-

iment. Since this ratio does not evolve quickly with Q2, we have included all Q2 values above

1 GeV2 in each x-bin. The different colored points show the effect of cutting into the resonance

region where W ∗ < 2 GeV. If duality holds, the different Q2 values contributing will wash

out any resonance structure and we would expect the average ratio to follow the deep-inelastic

trend. However, there is clearly an effect at x = 0.65, which corresponds to resonance structure

around W ∗ = 1.7 GeV. The black points, and the off-resonance red points follow the CTEQ

trend, suggesting that the n/p ratio may be taking “the middle road” in its asymptotic limit as

x→ 1.
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Figure 1.44: Ratio of experimental data with subtracted background and elastic tail to the full

simulation in the PWIA spectator picture as a function of W ∗. Data are for Q2 from 1.10 to

2.23 (GeV/c)2 and cos θpq from -1.0 to -0.2. The beam energy is 5.254 GeV. Error bars are

statistical only. Systematic errors are shown as a blue band.
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Figure 1.45: The effective F2n structure function (green markers) is shown as a function of

W ∗. The black line is the model F2n used in the simulation. Data are for Q2 from 1.10 to 2.23

(GeV/c)2 and cos θpq from -1.0 to -0.2. The beam energy is 5.254 GeV. Error bars are statistical

only. Systematic errors are shown as a blue band.
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Figure 1.46: Ratio of experimental data with subtracted background and elastic tail to the full

(normalized) simulation in the PWIA spectator picture is shown as a function of cos θpq. Data

are forQ2 from 1.10 to 2.23 (GeV/c)2 and W ∗ from 1.85 to 2.2 GeV. The beam energy is 5.254

GeV. Error bars are statistical only. Systematic errors are shown as a blue band.
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Figure 1.47: The effective F2n structure function (green markers) is shown as a function of x∗.

The red line is the model F2n. Data are for Q2 from 1.10 to 2.23 (GeV/c)2 and cos θpq from

-1 to -0.2. The beam energy is 5.254 GeV. Error bars are statistical only. Systematic errors are

shown as a blue band.
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Figure 1.48: Model F2n (lines) and measured effective F2n (markers) are shown as functions of

x∗ for two Q2 bins: from 1.10 to 2.23 (GeV/c)2 (red) and from 2.23 to 4.52 (GeV/c)2 (blue).

Results are shown for backward angles (cos(θpq) between -1.0 and -0.2) and low spectator

momenta (ps between 70 and 85 MeV/c), for which the spectator model should be a good

description. The beam energy is 5.254 GeV.
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Figure 1.49: The BoNuS experimental F2n versus x derived from the two independent analyses

of the same data set. Red points (”Nate”) correspond to the tagged/untagged ratio method and

blue points (”Slava”) correspond to the tagged to Monte Carlo ratio method. The blue lines

indicate the uncertainty limits of the CTEQ6x fit (see below), while the red line is from the fit

used in our Monte Carlo simulation. The two methods agree reasonably well - the differences in

all cases are smaller than the quoted systematic error (including the difference due to different

normalization prescriptions).
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Figure 1.50: The ratio Fn
2 /F

p
2 versus x. The SLAC deuteron data (circles) are from [20]

and [21], with corrections for Fermi motion only (blue curve) or for point-like nucleon configu-

rations based on Ref. [22]. The dashed red and the solid blue curves correspond to the upper and

lower bounds on this ratio from the CETQ global structure function fit for high x. The BoNuS

data are from the Ebeam =5.262 GeV run period, with statistical uncertainties shown on the

points and total (correlated) systematic uncertainties shown in the error band on the bottom of

plot. The colored points indicate cuts on W ∗ above 1.4 GeV (red), 1.6 GeV (blue) and 1.8 GeV

(black).
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