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Abstract
A laser system composed of a gain-switched diode laser operating at wavelength 1.066 m, followed by a multi-stage Yb-doped fiber amplifier chain and wavelength converter, was constructed that provides light with RFradio-frequency-structure at 533 nm and Watts of power. The laser system possesses features that are highly desirable for  photocathode-based electron accelerator applications employing DC high voltage photoguns: adjustable pulse repetition rates from sub-1 MHz to a few GHz, nominal pulse width 30 to 50 picoseconds, and direct synchronization to an external RF signal (i.e., the accelerator) without requiring complicated frequency locking systems required by mode-locked lasers. The challenge of obtaining sufficient power at 533 nm imposed by lower pulse energy alongside and lower optical coherence associated with gain-switched diode lasers operating near 1 m was addressed by using a high quality narrow linewidth laser diode and a PPLN frequency doubling crystal. The performance of this laser system – demonstrating unrivalled simplicity, reliability and flexibility – could boost the productivity of accelerator-based research programs that rely on DC high voltage photoguns that operate with green-light drive lasers, as evidenced by our recent experience operating accelerators operation driven byusing such lasers systems.	Comment by Matthew Poelker: we must be consistent throughout, I think I made all the corrections.   Maybe sometimes our pulsewidth range is inconsistent?

INTRODUCTION
High power picosecond-pulse lasers are used for industrial applications such as precision machining and material processing [1-3]. Picosecond-pulse lasers are also used for scientific research, particularly in the field of electron accelerators where ultraviolet, visible, and near IR lasers are used to generate bright electron beams with very high average current and/or bunch charge. But accelerator applications impose strict demands on drive lasers, namely in the context of long term reliability and timing stability, and sometimes these requirements are beyond the state-of-the-art. The drive laser systems at most accelerator photoinjectors rely on master oscillator power amplifier (MOPA) configurations, typically employing mode-locked seed lasers to generate short optical pulses and free-space or fiber power amplifiers to reach required power levels [4-5]. To achieve a stable optical pulse train, the cavity length of the mode-locked laser must be actively stabilized to minimize the timing jitter and the phase drift. Often, the accelerator environment is noisy, with vibrations and stray electrical signals that adversely impact laser cavity-length feedback electronics.  For free-space drive laser systems operating at lower pulse repetition rates, cavity length stabilization can be challenging, in particularly when a long laser cavity length may beis needed [6,].  And because of the inherent complexity of mode-locked lasers, it is not simple to quickly change the laser pulse repetition rate or laser pulse width. Mode-locked drive laser instabilities often lead to accelerator downtime which can significantly impact the scientific program through diminished scientific accomplishment.   
In contrast, gain-switching [7-9] is a pulse generation technique completely independent of the laser cavity length – it dominantly relies on an external electrical drive signal applied to the diode laser.  For accelerator applications, the electrical drive signal originates from the accelerator site-wide radio-frequency (RF) system.  As a result, the emitted optical pulse train remains precisely synchronized and phase-locked to the accelerator RF cavities without requiring any feedback stabilization systems.  Diode lasers can be gain-switched over a broad range of pulse repetition rates, from sub-MHz to a few GHz.  The biggest drawback of gain-switching relates to optical pulse width: whereas mode-locked lasers can generate very short optical pulses, from 10s of femtoseconds to over 100 picoseconds, gain-switched diode lasers generate optical pulses in the range of 10s to 100s of picoseconds, with no option for internal temporal pulse shaping or dispersion compensation. 	
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The first gain-switched-based laser system employed at an accelerator photoinjector operated at wavelengths of 780 or 850 nm using free-space diode lasers and diode amplifiers [9], but provided only low average power at CEBAF.  With the advent of telecommunications fiber-coupled diode lasers and erbium (Er-) doped fiber amplifiers operating at 1.56 m, higher power infrared laser systems based on gain-switching were developed [9-10].  Advances in laser technology now permit construction of similar systems at 1.06 m (to access the green wavelength range required by alkali-antimonidetypical photogun photocathodes [X]).  Dupriez et al., demonstrated 321 W average power with 20-ps pulses at 1-GHz repetition rate using a MOPA configuration with Yb-doped fiber amplifiers and operating with a gain-switched diode seed laser at 1.06 μm [11].  Similarly, K. Chen, et al, generated over 100 W average power with 1 to 21 ps pulses at repetition rates ranging from 56 MHz to 0.9 GHz [12], also with a 1.06 -μm gain-switched diode seed laser and Yb-doped fiber amplifier chain.  	Comment by Matthew Poelker: Want to put a reference or two here?  E.g., BNL’s recent bnched beam cooling experiment: Low Energy RHIC electron Cooling. I pasted it at bottom of paper, see below
Although the output power levels at ~ 1 m wavelength have increased dramatically over the years due to the rapid advance of fiber amplifier technology, high efficiency wavelength-conversion of low or moderate power gain-switched based laser systems to the green wavelength range has been less successful, providing only low to moderate power due to lower peak-intensity and optical coherence of gain-switched lasers operating at 1 m.  In this paper we describe an all-fiber MOPA drive laser consisting of a gain-switched diode laser at 1.066 m and, a fiber amplifier system and wavelength converter used to obtain light at 533 nm.  The problem of low wavelength-conversion efficiency was overcome using a PPLN frequency doubling crystal to obtain doubling efficiency up to 430%.  A production system operating at 374.255 MHz pulse repetition rate provided 50 ps optical pulses (FWHM) and 3 Watts average power at 533 nm, which was significantly more power than needed to produce an electron beam at 28 mA average current from CsxKySb photocathode installed within a dc DC high voltage phootogun [14,15]. The laser system has operated continuously for months without intervention. The laser has was also been tested at a much lower repetition rate,  at 4 MHz at Jefferson Lab Lowe Energy Circulator Facility (LERF) to demonstrate CuXXX isotope production for medical applications [X], showing anwith  anticipated excellent long-term phase stability.	Comment by Matthew Poelker: mentioned 40% in paper later on	Comment by Matthew Poelker: Add Yan’s recent paper too, I pasted it in the reference section, you arrange it properly, i.e., get numbering correct
Laser system
A schematic of the laser system is shown in Figure 1. The sub-mW light from the gain-switched diode laser is amplified using two homebuilt Yb-doped fiber amplifiers. The first Yb-doped amplifier, or pre-amplifier, is a 4 m long Yb-gain fiber (Nufern PM-YSF-HI) pumped with 976 nm light using a wavelength division multiplexer (WDM), then another WDM followed by a 90/10 fiber tap coupler for diagnostics. The second fiber amplifier, or power amplifier, consists of a 5 m long Yb-doped double-clad PM fiber (Nufern PLMA-YDF-10/125) with a 10-μm diameter core and 125-μm diameter cladding, a signal-pump combiner, a multi-mode 976-nm pump diode laser, and a stripper for separating the pump beam from the seed.  Optical isolators after each amplifier prevent retro-reflections from returning to the amplifiers.  Bandpass filters after each amplifier are used to remove residual pump light and amplified spontaneous emission (ASE) from the 1.066 m output beam. All of the fibers are polarization-maintaining (PM) which help to improves system stability compared to non-PM single mode fibers. More details are provided in the following sections.
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Figure 1: Optical schematic of the green-light drive laser composed of the gain-switched master oscillator, fiber amplifiers, and wavelength converter. GS, gain-switched. Iso/F, isolator/filter. WDM, wavelength division multiplexer. The 90/10 fiber tap coupler after the pre-amplifier is not shown in the scheme.  Gain-switching can be performed using a simple RF sine wave or with an RF pulse generator as shown, or a simple sine wave at ~ 1 W average power, not shown.  

Seed laser and Amplifiers
Although there are numerous reports of short optical pulses obtained via gain switching at wavelengths near 1.06 m, our experience suggests commercially available diodes lasers operating near 1 m lack the quality of those operating at the 1.56 m telecommunication wavebands. Recently, companies have developed better 1 μm laser diodes with stabilized wavelength and narrow spectral line width, but at very high cost. The diode we chose (QD Llaser diode, 1.064 μm) presents a very narrow sub-nm spectral line width, a key consideration for producing high coherence that often appears to be compromised by the short cavity of the laser diodes.   
As illustrated in Figure 1, Ggain switching can be realized by driving a laser diode with amplified either a sine wave or ps-electrical pulses or using a simple sine wave while biasing the diode near the lasing threshold with dc DC current through a bias-tee network. The gain-switched laser pulses have exactly the same repetition rate as that of the electrical drive frequency. The pulse width obtained from a gain-switched diode depends primarily on the diode laser cavity length (which influences the photon lifetime) and the magnitude of the RF and dc DC signals applied to the diode.  More RF power and more dc DC current result in longer pulses.  When too much current is applied, the diode exhibits relaxation oscillation as manifest by secondary optical pulses trailing behind the desired main pulse.  Recently, low-noise short electrical pulse generators [(for example, Alnair Labs Pproducts] ) have helped to achieve shorter optical pulses and with timing jitter comparable to diode lasers driven by RF sources and from mode-locked lasers.  Our diode could be gain-switched using an RF signal source plus an RF amplifier (~ 1 Watt average power) operating over a range of frequencies from 100 MHz to 5 GHz.  Lower pulse repetition rates could be accessed using a short-pulse electrical pulse generator, down to sub-MHz.	Comment by Matthew Poelker: We don’t show the sine wave option in the figure.  You don’t need to change the figure but the first sentence can be: “Gain switching can be realized by driving a laser diode with either a sine wave or ps-electrical pulses while biasing the diode near the lasing threshold with dc current through a bias-tee network.
Typical laser pulses from a gain-switched diode laser are shown in Figure 2 (top). The gain-switched pulse shape strongly depends on the DC bias current and the RF drive signal. In order to achieve a symmetric Gaussian-like pulse shape at a fixed repetition rate, the bias voltage and the RF signal amplitude need tomust be tuned and balanced. This usually results in an output power below 1 mW, which complicates diagnostic evaluation. Examples of typical laser pulses from a gain-switched diode laser are shown in Figure 2 (top). The pre-amplifier provides a linear gain of about 10, boosting the laser power to several milliWatts, allowing diagnostic measurement with a fiber tap without altering the original temporal properties. By adjusting the dc DC bias current while keeping the RF signal applied to the diode constant, the optical pulsewidth could be readily adjusted from 30 ps to over 70 ps (Figure 2, bottom).  And by adjusting both the dc DC bias and the RF pulse generator parameters, clean optical pulses over 100 ps could be achieved.    	Comment by Matthew Poelker: Here you would describe features of the two images, otherwise, why are there two images?  One image could be an example of a good pulse, the other image could show relaxation oscillation when driven too hard?  That would be helpful.  Maybe Kevin Wei can help us download files from fast scope?


	[image: ]	Comment by Matthew Poelker: Editors will give you a hard time about screen-grab figures, which are not allowed.  These two images can simply be removed, since everyone has seen an optical pulse before.  Maybe you have files of these images, for example, Figure3? They will ask you to remove the horizontal and vertical lines within the graph…..
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Figure 2: (a) Waveforms of a 30 ps electrical drive pulse (left) and 60 ps optical pulse (right). (b) Laser pulse width change vs. diode bias voltage adjustment when driven by 30ps electrical pulses at 476.3 MHz. Pulse widths are all measured in FWHM. 

Timing and Power Stability, Spectral Content
A very important specification of any photoinjector drive laser is timing jitter which directly affects electron accelerator operation. Timing jitter represents integrated phase noise integrated over certainover a specified frequency range and usually it is typically measured using a fast photo detector and a spectral spectrum analyzer, or a more sophiscated signal source analyzer as we do our measurement (HP4424B).  For a gain-switched system operating at 499 MHz (which is a drive laser repetition rate at CEBAF [x]), the rms timing jitter is about 1 ps within a fequency range of 1 Hz ~10 MHz and only 0.4 ps within the range 10 Hz ~10 MHz (Figure 3 top).  And as illustrated in Figure 3 (bottom), the timing jitter of a gain-switched laser system gets smaller as the repetition rate increases. These metrics are comparable to most state-of-the-art mode-lcoked lasers that employ sophisticated feedback loops and satisfy the requirements of many state-of-the-art research acclerator faciltites, and are comparable to most state-of-the-art mode-locked lasers that employ sophisticated feedback loops.  	Comment by Matthew Poelker: I was thinking we should sometimes mention why we chose specific rep rates, like 499 MHz and 374.25 MHz.  It’s also a way to add references.

I pasted a CEBAF reference at bottom of paper
Not represented in tImportantly, thehe plots of Figure 3 is the long term stability of the laser system: timing jitter values dodoes not change with time: no matter the time of day, or the day of the week, the timing jitter values remain constant. This is extremely important for stable and reliable accelerator operation. Observations made using both types of accelerator drive lasers, gain-switched and modelocked, indicate, the phase drift of a gain-switched based laser is less than a degree of the accelerator RF clock cycle measured over 10 hours, whereas with modelocked lasers employing phase locking electronics and pizo-actuators, the phase drift can be a few degrees. Stated from a practical perspective - no intervention was is required when using a gain-switched based laser system during routine acclerator operation over many days, weeks or even months.


(a)

(c)
Figure 3: Timing jitter measurements. (a) a typical phase noise spectrum of gain-switched laser pulses at 499 MHz repetition rate from 1 Hz to 40 MHz,. (b) Variation of timing jitter vs.ersus pulse repetition rates (1 Hz~10 MHz).

The power stability of the gain-switched based laser system is consistantly better than 1% measured over 8 hours, at any stage of the amplifier chain. The drift of the center wavelength is well below a fraction of 1 nm, which is much better than required. A very clean optical spectrum centered around 1066 nm is obtained after the power-amplfier operating at 10 W (Figure 4).  The residual pump light at 976 nm and the broadband ASE due to the higher gain from the pre-amplifier were completely cut off byare removed from the output using the bandpass filters between the amplifier stagess. Figure 4 shows the spectral output of the laser system with (inset) and without the bandpass filters.  There is no noticeable change in the temporal laser pulse profile before and after the power-amplifier despite a gain over three orders of magnitude, as shown in Figure 4 b and c, the pulse width is about 55ps in both cases. It should be mentioned that here, the spectrometer (OceanOptics fiber spectrometer HR4000) used here was menat meant to cover a broadband range so that all the spectral components of interests can could be captured, the actual laser bandwidth is less than 0.5 nm which is narrower than the instrument resolution.  There is no noticeable change in the temporal laser pulse profile before and after the power-amplifier despite a gain of over three orders of magnitude: as shown in Figure 4 b and c, the pulse width is about 55 ps in both cases. and therefore needs to be measured by a different spectral analyzer which will be shown in the following section.	Comment by Matthew Poelker: Top figure shows the pump and ASE.  So I changed the wording to say the optical spectrum in top figure is NOT clean, but is made clean with filters, see inset.
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	[image: ]	Comment by Matthew Poelker: If you have the data for these images, perhaps overlay them?  But if you don’t have the data, these images can simply be removed, just say with text that the pulswidth is the same along the amplifier chain.
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Figure 4: (a) Laser spectra from pre-amplifier and power amplifier, (b) A 55 ps pulse from pre-amplifier, and (c) the amplified pulse from power-amplifier at 10 W. 

To check if laser optical pulses experience spectral distortion during amplification, we recorded the spectra of laser pulses at different power levels by using a spectral spectrum analyser with a spectral resolution of 10 pm resolution. As shown inLooking at the three images presented in Figure 5 which show the spectral content of the seed laser and the amplified light at two power levels, the center wavelength basically saw no shiftremains constant while but there were noticable changes in the shape and bandwidth of the spectra, from 0.12 ~ 0.05 nm (FWHM) at different power levels: bandwidth decreases as the output power gets higherincreases. This could be due to the combined effects of non-linear amplification gain and fiber filters. Another At higher amplification, feature is the spikes appeared on the top and two sides of the spectral centerof the spectral profile.  , which are excited by the high gain and This is typical of resembles many high-power fiber amplification, and stems from…..but is not detrimental to laser system performance at least at power levels evaluated here.  There is no deterimenatal spectral distortion was observed through the amplification process. It worth mentioning though, the laser spectrum spectral contents tends to grow when the amplificationiotn gain is high enough, as in the cases of amplifiers at the level of 10s to 100s of Watts.  	Comment by Matthew Poelker: Tighten this up, I don’t understand.  Maybe provide a reference?  	Comment by Matthew Poelker: You mean, you would expect something different if we operated our laser system at higher power?  Is this bad?  Say what bad thing you expect would happen. For example, you mention bandwidth decreases at higher gain.  Does this mean pulses would get longer? If you say this, I think you must present a reference. 
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	[image: ]	Comment by Matthew Poelker: These are good, hope you have data files for them.  As shown though, the reader does not get the impression that bandwidth actually changes.  
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Figure 5: Laser spectra for: (a) seed laser at mW power level, centered at 1065.088 nm, bandwidth FWHM BW  is 0.124 nm, (b) amplifier at 3 W, centered at 1065.083 nm, bandwidth FWHM BW is 0.065 nm, and (c) amplifier at 6.5 W, centered at 1065.083 nm, bandwidth FWHMBW is 0.048 nm FWHM.
Harmonic converter
The pPhotocathodes for unpolarized high- current accelerator applications, such as GaAs and the large family of alkali-antimonide compounds, require visible light. The quantum efficiency (QE) of a freshly prepared semiconductor photocathode is aboutcan easily exceed a few percent at green wavelengths where laser light is readily available, but for this discussion a. Assume ing a lower QE of 1%, %, in which case less thanapproximately 2 3W of green light is needed to generate 10 mA electron beam current, which means less than 10 W of IR light is required. In most cases, a high current accelerator with 10s of mA current would only require a few Watts of green light. The pulse width of the pulses generated directly by gain-switched usually falls between 20 ps to 100 ps, andFor DC high voltage photoguns like the ones used at Jefferson Lab, laser pulses in the range of 20 to 80 ps are ideal because shorter pulses introduce unwanted space charge induced emittance blow-up.  As described above, gain-switching provides a perfect match for this optical pulse range.
50 ps is what is often seen from many photogun drive lasers. Normally, aA non-critical-phase matched (NCPM) LBO crystal would beimmediately comes to mind as an excellent choice for converting picosecond pulses at the near- IR wavelength of 1 μm picosecond pulses to 0.5 μm pulses through second harmonic generation (SHG). For high power picosecond lasers, over 40% SHG efficiency is common and nearly 70% has been achieved with 50 W 50 ps pulses [2] using LBO. And with a much shorter pulse (1.1 ps) pulse width and much higher power (110 W), up to 74% SHG efficiency was reported [5]. LBO is an excellent nonlinear optical material and has been the dominant crystal used for high average power SHG. However, in the case of high repetition rate drive lasers, i.e. with lower pulse intensity, and with just a few Watts of power and ~50 ps pulse widths, the SHG efficiency of LBO tends to be lowpoor with a few Watts of power and 10s of ps pulse width. In addition, our experience shows thindicates most e quality of the of the laser diodes operating at 1 m exhibit and the lowerpoor optical coherence of thewhen gain-switched pulses wouldand this severely impacts the SHG efficiency. 
PPLN is a different nonlinear crystal that presents provides much higher SHG efficiency in case offor low pulse energy lasers or and even CW lasers [add Compton reference here?]. While we attempted but were not able Our attempts to produce useful SHG power using a 20 mm long LBO were unsuccessful, but a much better result was obtained using a temperature-tuned PPLN crystal (0.5 x 0.5 x 10mm long): nearly 30% SHG efficiency was achieved for the laser conditions described above, and with increased input power, the SHG efficiency reached a maximum of 40%.  As shown in Figure 6, the SHG efficiency begins to saturate at approximately 5 W input power, likely due to tight focusing in the crystal (focus diameter about 0.15 mm). As mentioned earlier, PPLN crystals are normally used for lower power laser beams, due to their characteristically limited physical size (less than 1mm in one dimension) and low damage threshold compared with LBO crystals. To further increase the SHG power of our laser without the risk of optical damage, a larger aperture crystal ( e.g., >1 mm x 1 mm available from vendors ) can be used. This could provide a means to allow more input power and produce considerably more power at green wavelength while keeping beam power density below damage threshold and without deep saturation. The spatial distribution of the second harmonic beam was evaluated with a Spiricon beam profiler, indicating nearly perfect beam quality (M2 ~ 1.15, Figure 7).	Comment by Matthew Poelker: Add Gaskell Compton reference here?

 [image: ]	Comment by Matthew Poelker: I like it when there are arrows, showing which data set belongs to which axis
Figure 6: Experimental data for SHG power and conversion efficiency with LBO and PPLN. The lLaser pulse width is 50ps and pulse, repetition rate is  346 MHz.	Comment by Matthew Poelker: This shows only PPLN data, right? No LBO data so remove the text in caption
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Figure 7: Beam profile of a the 532 nm generated beam, measured with a Spiricon beam profiler.

Driver laser for high current photoinjectors
The green-light gain-switched laser system was used to create electron beam at two accelerator locations at Jefferson Lab.  One location serves as a photogun/photocathode test stand where the laser was used to produce magnetized electron beam at record-level current magnetized beam, see details in references [13, 14].  During a high current test over two days, the stable and reliable gain-switched-based drive laser system produced picosecond-pulse magnetized beams at 28 mA average current and 1.5 A peak current at the photocathode. The drive laser was set up to run withprovide 50 ps (FWHM) pulse width and 374.25 MHz repetition rate, with the repetition rate chosen for a proposed electron cooler application for the Electron Ion Collider [X]. The demonstration of the sustained high current beam performance represents an important step toward demonstrating the feasibility of a technically challenging Electron Ion Collider cooler design using magnetized beams. This The laser system operated for months without intervention, permitting focused study of the photogun and photocathode, which was the fundamental basis for the tests. until key parameter changes were required. 


The same laser was then used to drive a photogun at the JLab LERF for medical isotope production [x], where it served to dramatically improve accelerator performance compared to that obtained using a mode-locked drive laser.  For this application, a very low pulse repetition rate was required: the laser frequency was easily tuned to the required 4 MHz, which  is not trivial at allnot easy to obtain using  with other oscillator including mode-locked lasers. To check the phase stability, we recorded the electron beam position signals from the beam position monitors (BPMs) at two different locations in the injector where such signals are sensitive to the electron bunch phase and have been routinely used to monitor the bunch phase during beam operation with a mode-locked drive laser in the past [FEL refs?]. As shown in Figure 10, the signals basically remained constant during a 15 -hours of operation, representing a sustained long-term phase stability and a in sharp contrast to our previous experience using a mode-locked drive laser ( Neodymium Doped Yttrium Vanadate solid-state laser mode-locked by a semiconductor saturable absorber. The vendor is Time-Bandwidth Product). Based on our previous experience with the mode-locked drive lasers,when it was quite common to see a notable phase drift within aover just a few hours of operation.  Under such circumstances, intervention was  and an adjustment usually would be required to maintain the stable electron beam stableand this caused downtime. It should be noted that the slight variations on the top of the curve (red)s in Figure 10 may be induced by other devices on the accelerator beamline, in particular the SRF superconducting RF cavities. The few sharp drops of the signals were due to the loss of electron beam when the machine was tripped off. 

[image: ]
Figure 10: Electron beam position monitor signals at two different locations at LERF were recorded during a 15- hours of accelerator operation. A fewThe sharp drops of the signals were due to loss of beam when the accelerator tripped by otherOFF causes caused such asby unstable superconducting RFSRF cavities. 

SUMMARY
Electron accelerators with photoinjectors are particularly sensitive to drive laser beam quality and stability, specifically the spatial distribution of the drive laser light and, amplitude and phase variation over time. By employing fiber amplifier technology, the issues ofproblems related to laser amplitude stability and spatial quality appears to beare solved.  In this paper, we suggest the last issue – long-term phase stability - can be solved using gain-switching, at least for photoinjector applications that do not require extremely short pulses (for example, RF photoguns) and the tight demanding timing jitter requirements of X-ray such as free electron lasersXFEL machines. We reported a stable and flexible photocathode drive laser system that combines gain-switching with fiber laser amplifier technology, allowing variable pulse repetition rates from a few sub-MHz to a few GHz and pulse width from 10s to 100s ps. The demonstration of the performance of such athis laser system has openeds up a better path for building high power photocathode drive lasers that exhibit unrivalled simplicity, reliability and flexibility for applications in accelerators applications and beyond. Finally,For example besides driving photoguns, these this lasers systems can could be used to improve the performance of Compton polarimeters [15-18] and Compton-backscatter photon light sources [19-20].  Compared to mode-locked lasers, the simplicity and reliability of the gain-switched based laser system may outweigh the comparatively long pulse disadvantage.  
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S. Seletskiy, M. Blaskiewicz, A. Drees, A. Fedotov, W. Fischer, X. Gu, R. Hulsart, D. Kayran, J. Kewisch, C. Liu, M. Minty, V. Ptitsyn, V. Schoefer, A. Sukhanov, P. Thieberger, and H. Zhao, “Obtaining transverse cooling with nonmagnetized electron beam”, accepted 16 November, 2020 for publication in Phys. Rev. Accel. Beams



 

Pulse rep rate 499MHz
Timing jitter 1.1ps
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