Simulations for CalCom

Introduction to GEMC Rates, Scalers studies Possible studies for different experiments/ configurations/fields Trigger Studies

> Maurizio Ungaro Jefferson Lab CLAS12 CWB Review January 15, 2015

What is **GEMC**

Typical Geant4 simulation

What is **GEMC**

GEMC: all parameters are external

What is **GEMC**

GEMC: all parameters are external, formalized

GEMC Factories

MYSQL, TEXT, CCDB: run number, variation, id, date

Generators

Internal: up to 3 particles One primary two "beam" (will change to arbitrary number)

Lund Format (text)

SLAC Formats (StdHep, IXDR)

Easy to add others, plugins

GEMC

General text format in the works

Beam on Target

- Number of electrons / event: 10³⁵ luminosity is 130K
 e- / event in 250s window
- Can be bunched (i.e. 2 ns bunch for CLAS12)
- Vertex smeared, rastered

Output, bank structure

Same output as data calibration/commissioning

Automatic

Voltage Signal

Total Signal is integral of all the step-signals. Amazingly enough signal processing time is small.

Rise time: 1ns Fall time: 2ns Delay: 50ns 1 MeV = 100 mV

User-defined

CLASI2 simulations

CLASI2 simulations

Detector	Sensitivity	Digitization
BST	3/4 regions, 2 layers/region, 3 modules/layer, 256 variable angle strips. Charge sharing. electronic noise.	3 bit ADC, region/layer/strip
Micromegas	3/4 regions, 2 layers/region, 3 tiles/layer, 1000 strips/tile. Charge sharing. Lorentz angle.	12 bit ADC, region/layer/tile/strip
CTOF	58 scintillators, PMT q.e., attenuation length, effective velocity	region/paddle ADC TDC
CND	3/4 layers, 48 scintillators each, PMT q.e., attenuation length, effective velocity, birks effect, paddle resolution	region/layer/paddle ADC TDC
HTCC	12 sectors, 4 layers. Wavelength-dependent PMT q.e., gas and mirror refraction indexes	sector/layer, PMT, nphe
DC	3 region, 2 superlayers/region, 6 layers/SL. DOCA, drift velocity, cell resolution	sector/region/SL/layer/wire, TDC
LTCC	6 sectors, 2 regions, 18 PMT / region. Wavelength-dependent PMT q.e., gas and mirror refraction indexes	sector/region, PMT, nphe
FTOF	6 sectors, 3 panels, 5/23/62 paddles/panel, left right PMT	sector, panel, ADC TDC
PCAL	15 layers, u,v,w views, 24 scintillator/view, attenuation length, effective velocity, PMT gain, nphe/charge	sector/stack/view/PMT ADC TDC
EC	39 layers, u,v,w views, 36 scintillator/view, attenuation length, effective velocity, PMT gain, nphe/charge	sector/stack/view/PMT ADC TDC
RICH	Wavelength-dependent PMT q.e., gas and mirror refraction indexes, multi- channel PMT	PMT, ADC, TDC
FT	Light Yield for PbW04, APD q.e, gain, noise	PMT, ADC, TDC

Background Rates, Scalers - example 1 (SVT)

SVT:

Geometry: complete.

Sensitivity: 3/4 regions, 2 layers/region, 3 modules/layer, 256 variable angle strips. Charge sharing. electronic noise.

Digitization: 3 bit ADC, region/layer/strip

Background Rates, Scalers - example I (SVT)

Energy Deposited (Threshold Study)

Rates / particles / energy deposited / target

Edep > 0.04

	EM	Hadronic	Total
1a	57.68	2.588	60.27
1b	43.29	2.124	45.41
2 a	50.82	3.685	54.51
2b	41.91	3.162	45.07
3a	44.59	4.813	49.4
3b	38.04	4.354	42.4
4a	32.74	3.383	36.12
4b	28.83	3.862	32.69

GeV/(s cm2) rad/(year cm2) GeV/s mrad/s mrad/(scm2) rad/year target 15.054 15.060 0.00462 145 145 1h2 20325 6.244 196939 20332 1d2 6.247 0.00462 197013 23.865 0.00733 312193 231 32220 9.899 С 38.650 374 52182 16.032 0.01187 505612 Fe Pb 66000 48.885 20.278 473 0.01501 639498

Rates in Layer: 1a

(what's shown here would correspond to random trigger in clas12)

Edep > 20 KeV, Rate in MHz

13

Background Rates, Scalers - example II (FTOF)

FTOF:

Geometry: complete.

Sensitivity: 6 sectors, 3 panels, 5/23/62 paddles/panel, left right PMT

Digitization: sector, panel, ADC TDC

DC:

Geometry: complete.

Sensitivity: 3 region, 2 superlayers/ region, 6 layers/SL. DOCA, drift velocity, cell resolution

Digitization: sector/region/SL/layer/ wire,TDC

Background Rates, Scalers - example II (FTOF)

15

Most very low energy.

Energy/µs converted into current.

Safety margin for FTOF: 100 μ A

Current vs Sector / Paddle

Background Rates, Scalers - example III (DC)

Drift Chambers Occupancy vs Layer vs Wire

Drift Chambers Occupancy

Background Rates, Scalers - example IV (HTCC)

HTCC:

Geometry: complete.

Sensitivity: 12 sectors, 4 layers. Wavelength-dependent PMT q.e., gas and mirror refraction indexes

Digitization: 3 bit ADC, region/layer/strip

Background Rates, Scalers - example IV (HTCC)

Rates vs n. photoelectrons 20 ns window Rates vs cluster size (max cluster = 2x2)

Beamtime for different running configurations

Generator (SIDIS, DVCS, resonances, etc) Different detectors/shielding configurations Polarity and strength of fields Target configurations

- Scaler (Detector and Beamline Monitors), as a function of angles
- Trigger rates
- Missing and invariant masses positions, width
- Yield of different particles / different angles / field
- Energy dependent background overlaps with CLAS6 (EC)
- FT: elastic scattering studies for calibration
- Multiple thin targets

What if some scalers do not agree with data? Can compare scalers from all detectors and beam line as clues as sources of background, etc

Background for different solenoid / torus field

3000 e-, 11 GeV, LH2 target (1/40 luminosity for 250 ns)

Full Solenoid

20% Solenoid (1T)

No Solenoid

Polarity and zero field studies (straight tracks)

Trigger Studies

FADC pulse mode (signal is integrated)

ftof p1b paddle 18

ftof p1b paddle 18

slot, channel, n(timestamp, integrated ADC)

This part can be done by GEMC

Trigger Studies

FADC raw mode (4ns-steps signal shape)

Trigger Studies

External Program

Detector Trigger, Sector Trigger CLAS12 trigger

GEMC Digitization

As close as possible to DATA

- Digitization should be AGARA: As Good As Reasonably Achievable
- Calibration Constant, mechanism should not slow down or complicate GEMC. Same DB (CCDB)
- CASE by CASE Study by simulation and detector experts

Summary

- GEMC used for rates/background. More studies needed.
- Commissioning: rates/scalers, missing/invariant masses, particles yields comparison GEMC/data
- Study of beam time for all planned running configurations during commissioning.
- Trigger Studies