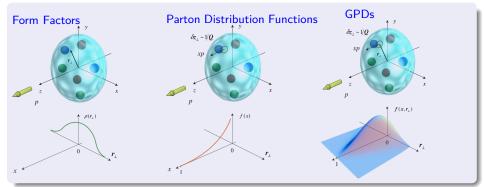
Timelike Compton Scattering with CLAS12 at Jefferson Lab

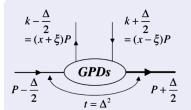
Pierre Chatagnon

Institut de Physique Nucleaire d'Orsay For the CLAS Collaboration

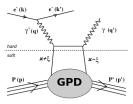
chatagnon@ipno.in2p3.fr

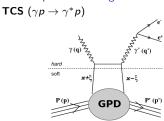
International Nuclear Physics Conference 2019 Glasgow, August 1st, 2019





Generalized Parton Distributions



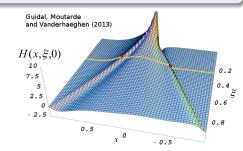


- 8 GPDs per flavour for spin-1/2 particles
- 4 quark-helicity conserving GPDs $H, \tilde{H}, E, \tilde{E}$
- ullet GPDs depend on x, ξ and t

From Deeply Virtual Compton Scattering to Timelike Compton Scattering

DVCS
$$(\gamma^* p \rightarrow \gamma p)$$

Compton Form Factors (CFF)


$$\mathcal{H} = \sum_{q} e_q^2 \left\{ \mathcal{P} \int_{-1}^1 dx H^q(x,\xi,t) \left[\frac{1}{\xi-x} - \frac{1}{\xi+x} \right] + i\pi \left[H^q(\xi,\xi,t) - H^q(-\xi,\xi,t) \right] \right\}$$

Imaginary part

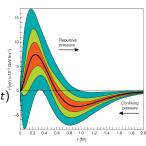
- Measured in DVCS asymmetries
- Accessible in TCS photon polarization asymmetry

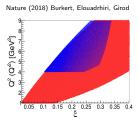
Real part

- Accessible in DVCS cross section.
- Accessible in TCS in cross section angular modulation

Physics Motivations

The CFFs dispersion relation at leading-order

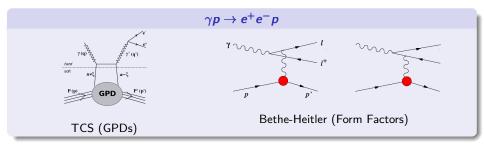

The CFFs dispersion relation at leading-order and leading twist :
$$Re\mathcal{H}(\xi,t) = \mathcal{P} \int_{-1}^{1} dx \left(\frac{1}{\xi-x} - \frac{1}{\xi+x}\right) Im\mathcal{H}(\xi,t) + D(t)$$
 D-term expansion

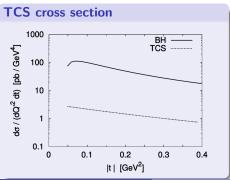

D-term expansion

$$D(t) = \frac{1}{2} \int_{-1}^{1} dz \frac{D(z,t)}{1-z}$$

$$D(z,t) = (1-z^2)[d_1(t)C_1^{3/2}(z) + ...]$$

- $d_1(t)$ is directly related to the pressure distribution in the nucleon.
- Measurement of photon polarization asymmetry will provide a test of universality of GPDs.

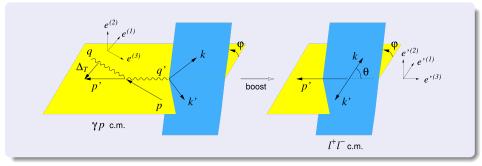




DVCS phase space TCS phase space

Boër, Guidal, Vanderhaeghen (2015)

TCS and Bethe-Heitler


$$rac{d^4\sigma}{dQ'^2dtd\Omega} = \sigma_{TCS} + \sigma_{BH} + \sigma_{INT}$$

TCS cross section not large enough to allow meaningful measurement

Use interference term to access GPDs

Berger, Diehl and Pire (2002)

$\gamma p ightarrow e^+ e^- p$ kinematics

$$Q'^2 = (k + k')^2$$
 $t = (p' - p)^2$ $L = \frac{(Q'^2 - t)^2 - b^2}{4}$ $L_0 = \frac{Q'^4 sin^2 \theta}{4}$ $b = 2(k - k')(p - p')$ $au = \frac{Q'^2}{2p \cdot q}$ $s = (p + q)^2$ $t_0 = -\frac{4\xi^2 M^2}{(1 - \xi^2)}$

$\gamma p ightarrow e^+ e^- p$ Cross section and CFFs

Interference cross section

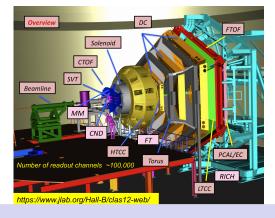
$$\frac{d^4\sigma_{INT}}{dQ'^2dtd\Omega} = -\frac{\alpha_{em}^3}{4\pi s^2} \frac{1}{-t} \frac{m_p}{Q'} \frac{1}{\tau\sqrt{1-\tau}} \frac{L_0}{L} [\cos(\phi) \frac{1+\cos^2(\theta)}{\sin(\theta)} \text{Re } \tilde{\textbf{M}}^{--} + \dots]$$

$$\rightarrow \tilde{\textbf{M}}^{--} = \frac{2\sqrt{t_0-t}}{M} \frac{1-\xi}{1+\xi} \left[F_1 \mathcal{H} - \xi(F_1+F_2) \tilde{\mathcal{H}} - \frac{t}{4M^2} F_2 \mathcal{E} \right]$$

BH cross section

$$\frac{d^4 \sigma_{BH}}{dQ'^2 dt d\Omega} \approx -\frac{\alpha_{em}^3}{2\pi s^2} \frac{1}{-t} \frac{1 + \cos^2(\theta)}{\sin^2(\theta)} \left[(F_1^2 - \frac{t}{4M^2} F_2^2) \frac{2}{\tau^2} \frac{\Delta_T^2}{-t} + (F_1 + F_2)^2 \right]$$

BH cross section diverges at $\theta = 0^{\circ}$ and 180°


Weighted cross section ratio

$$R(\sqrt{s},Q'^2,t) = \frac{\int_0^{2\pi} d\phi \cos(\phi) \frac{dS}{dQ'^2 dt d\phi}}{\int_0^{2\pi} d\phi \frac{dS}{dQ'^2 dt d\phi}} \qquad \frac{dS}{dQ'^2 dt d\phi} = \int_{\pi/4}^{3\pi/4} d\theta \frac{L}{L_0} \frac{d\sigma}{dQ'^2 dt d\phi d\theta}$$

CLAS12

- Central Detector
 - Time-of-Flight (CTOF)
 - Tracking (SVT and MM)
 - Neutron detector (CND)
- Forward Detector
 - Drift Chambers (DC)
 - Time-of-Flight (FTOF)
 - Calorimeters (PCAL/EC)
 - Cherenkov Counters (HTCC and LTCC) RICH

 - Forward tagger (FT)

Data Set

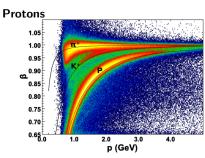
- First CLAS12 experiment, data were taken in the Spring and Fall 2018
- Beam energy 10.56 GeV / Liquid hydrogen target
- Two torus magnetic field configurations (Inbending/Outbending electrons)
- Total accumulated charge in the Faraday cup for data shown here : 18 mC \sim 3% of the proposed total data (100 days at 75nA). Total taken data corresponds to 50% of total proposed data

Data analysis

$$ep \rightarrow e'\gamma p \rightarrow (e')e^+e^-p'$$

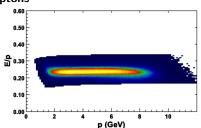
Final state

- Use the CLAS12 reconstruction software PID
- Events with exactly one e⁺,one e⁻ and one proton are selected


Scattered electron

- Cuts on scattered electron
- Look at missing transverse momentum of $ep \rightarrow e^+e^-pX$ system

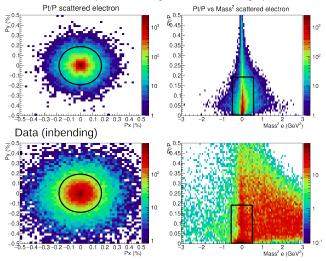
Incoming photon


- The real photon is radiated by the beam electron
- Cuts on scattered electron constrain the virtuality of the photon $Q^2 \propto cos(\Theta_{scattered})$

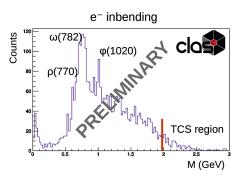
e^+e^-pX final state selection

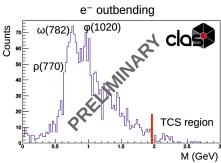
 $\begin{tabular}{ll} \bf Matching} β calculated from \\ \bf Time-Of-Flight and momentum from \\ \bf tracking \\ \end{tabular}$

Leptons



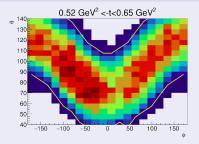
- Number of Cherenkov photons > 2
- Minimum energy deposit in the Pre-Shower Calorimeter (PCAL)
- Cuts on Calorimeters sampling fractions

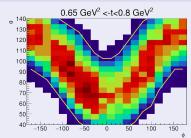

Exclusivity cuts


- Scattered electron: $p_{\text{scattered e}}^{\mu} = p_{\text{beam}}^{\mu} + p_{\text{target}}^{\mu} p_{\text{proton}}^{\mu} p_{\text{e}}^{\mu} p_{\text{e}}^{\mu}$
- Mass of the real photon: $M_{\gamma}^{2} = (p_{target}^{\mu} p_{proton}^{\mu} p_{e}^{\mu} p_{e}^{\mu})^{2}$

Simulation (e⁺e⁻p events weighted with BH weight)

Lepton-pair spectrum


- 3% of total proposed data
- Low e^+e^- invariant mass spectrum is dominated by vector meson photoproduction \to Mass cut between the ρ region [ρ (1450 MeV) and ρ (1700 MeV)] and J/ψ (3 GeV) \to The mass region between 2 GeV and 3 GeV will be used for the analysis

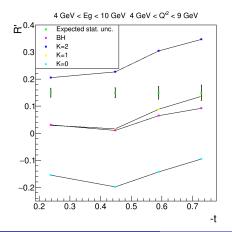

Projected results

Experimental cross section ϕ modulation ratio

$$R(\sqrt{s},Q'^2,t) = \frac{\int_0^{2\pi} d\phi \, \cos(\phi) \, \frac{dS}{dQ'^2 dt d\phi}}{\int_0^{2\pi} d\phi \, \frac{dS}{dQ'^2 dt d\phi}} \quad \rightarrow \quad R' = \frac{\sum\limits_{\phi} \cos(\phi) Y_{\phi}}{\sum\limits_{\phi} Y_{\phi}} \text{ where } Y_{\phi} = \sum\limits_{\theta} \frac{L}{L_0} N_{\theta}^{\phi} \frac{1}{A_{\theta}^{\phi}}$$

Estimate of CLAS12 acceptance with BH simulation

Acceptance in the θ/ϕ plane $(A^\phi_\theta=\frac{N_{REC}}{N_{GEN}})$


- → Yellow lines are CLAS12 acceptance limits
- \rightarrow Cut regions correspond to events where one lepton goes in the beam pipe (BH peaks are out of CLAS12 acceptance)

Projected results

Generator developed by R. Paremuzyan at Jefferson Lab.

 \rightarrow Double distribution GPD parametrization

$$H(x,\xi,t) = H_{DD}(x,\xi,t) + \kappa \frac{1}{N_f} \Theta(\xi - |x|) D(\frac{x}{\xi},t)$$

- R' is sensitive to D-term strength BUT
 R' also depends on the acceptance
 limits → difficulties to compare
 measurement with theoretical models
- ullet Possibility to restore θ dependence of the interference cross-section

$$\begin{split} \frac{d^4\sigma_{TOT}}{dQ'^2dtd\Omega} &= \frac{d^4\sigma_{BH}}{dQ'^2dtd\Omega} + \frac{d^4\sigma_{INT}}{dQ'^2dtd\Omega} \\ \frac{d^4\sigma_{INT}}{dQ'^2dtd\Omega} &= -\frac{\alpha_{em}^3}{4\pi s^2} \frac{1}{-t} \frac{m_p}{Q'} \frac{1}{\tau\sqrt{1-\tau}} \frac{L_0}{L} \\ &[\cos(\phi) \frac{1+\cos^2(\theta)}{\sin(\theta)} Re \ \tilde{M}^{--} + \ldots] \end{split}$$

Conclusion

- Timelike Compton Scattering allows to investigate the real part of CFFs which is difficult to constrain with DVCS.
- No published results on TCS yet.
- Main resonances in the e^+e^- spectrum visible in CLAS12 data.
- Projected statistic will allow insight on the strength of the D-term.

Outlook

- The analysis procedure leading to R' has been developed.
- More statistics is coming from the data processing of the 2018 run.
- ullet Dependence on acceptance limits of R' will be corrected to allow comparison with models and future TCS measurements.