J/ψ Near-Threshold Photoproduction off the Proton and Neutron with CLAS12

J/ψ Near Threshold Photoproduction

CLAS12 operates close to the 8.2 GeV J/ ψ ($c\bar{c}$ meson) photoproduction threshold.

Near threshold, all the valence quarks of the nucleon are predicted to participate in the reaction compared to one or two at higher energies [2].

[3] relates the nucleon gluonic formfactor to the t dependency of the differential cross section.

CLAS12 will make a first measurement of J/ψ near-threshold photoproduction on the neutron.

Measurements of the J/ψ total cross section as a function of the photon beam energy and theoretical predictions scaled to GlueX data [1].

[1] A. Ali, et. al. (GlueX Collaboration), Phys. Rev. Lett. **123**, 072001 (2019).

[2] S. Brodsky, E. Chudakov, P. Hoyer, J. Laget, *Phys. Lett. B.* **498**, 23 (2001).

[3] L. Frankfurt, M. Strikman, Phys. Rev. D. 66, 031502 (2002).

Mass Radius of the Nucleon

- The J/ψ differential cross section as a function of t can be related to the mass radius of the nucleon [4].
- Measurements at Jlab's Hall-C are in good agreement with those from GlueX [5].
- The proton mass radius is significantly different from the charge radius ($R_c = 0.8409 \pm 4 \cdot 10^{-4}$ fm), suggesting that its gluon radius is significantly smaller than its quark radius [5].
- CLAS12 will make the same measurements for the neutron.

J/ψ differential cross section as a function of –t. Data from the GlueX Collaboration [1], plot taken from [4].

[4] D.E. Kharzeev, *Phys. Rev. D* 104, 054015 (2021).
[5] B. Duran, et. al. (J/ψ – 007 Collaboration), preprint available at arXiv:2207.05212 (2022).

The CLAS12 Detector

The CLAS12 Detector is located in Jefferson Lab's Hall B, in Newport News, Virginia.

The GlueX detector is located in Hall D.

The CLAS12 Detector

- The CLAS12 Detector is located in Jefferson Lab's Hall B, in Newport News, Virginia.
- The recently upgraded CEBAF accelerator facility produces a 12 GeV electron beam, with beam energies up to 11 GeV delivered to Hall B.

The Forward Detector has polar angle coverage of 5 to 35 degrees.

The Central Detector has polar angle coverage of 35 to 125 degrees.

CLAS12 Forward Detector

- The High Threshold Cherenkov Counter (HTCC) was built to identify electrons.
- The tracking system and Drift Chambers
 (DC) measure the charge and momentum of particles.
- The Forward Time Of Flight (FTOF) counters were designed to resolve charged hadrons.

The Electromagnetic Calorimeters (PCAL and EC) are used to detect neutrals and identify electrons and muons.

Experiment Overview

> J/ ψ decays to a lepton pair, with l^+l^- denoting either e^+e^- or $\mu^+\mu^-$.

CLAS12 took data with both a proton and a deuterium target offering several potential final states:

 $ep \rightarrow e' J/\psi p \rightarrow (e')l^+l^-p$ $e p_{bound} \rightarrow e' J/\psi p \rightarrow (e')l^+l^-p$ $e n_{bound} \rightarrow e' J/\psi n \rightarrow (e')l^+l^-n$ $ed \rightarrow e' J/\psi d \rightarrow (e')l^+l^-d$

J/ψ quasi-real photoproduction on a proton target

Lepton Identification

Electrons and positrons are required to produce a signal in the HTCC and high energy deposition in the calorimeter. Their main source of background is due to high momentum pions firing the HTCC.

- Muons are minimum ionising particles which we select with cuts on their energy deposition in the calorimeters. These are susceptible to a significant charged pion contamination.
- We refine leptons PID by training a machine learning classifier on variables from several CLAS12 detector subsystems to remove the pion background.

The PID process is then reduced to a cut on the response of the classifier.

Hadron Identification

- For protons (and charged hadrons in general) a cut is made on the Beta versus Momentum parametrization.
- For neutrons we require a neutral charge. No further cuts were applied as there isn't any strong evidence of photon contamination.

Particle Corrections

Radiative corrections for electrons/positrons add the momentum of radiated photons.

- Neutrons also produce secondary clusters. These are removed by taking the earliest neutral in a given sector.
- The reconstructed path length for neutrons is corrected for a more accurate calculation of the momentum.
- We apply fiducial cuts to remove e+/e- hits close to the edges of the PCAL where the shower is not fully contained within the calorimeter.
- Fiducial cuts in the drift chambers are applied to electrons, positrons, protons and muons by removing hits at the edge of the layers.

Event Selection

- We minimize Q^2 to select only quasi-real photoproduction events. We also want the missing mass close to the mass of the scattered electron.
- The widths of these distributions can be parametrised as a function of the photon energy.
- Alternatively, we can train a neural network to distinguish between:
 - > J/ψ simulation.
 - Mismatched particles from different events of the above.

Total Cross Section

Shown here are the cross sections measured in:

- ► $ep \rightarrow (e')\mu^+\mu^-p$
- ► $e p_{bound} \rightarrow (e')e^+e^-p$
- ► $e n_{bound} \rightarrow (e')e^+e^-n$
- We are still working on the absolute normalization, ω_c . This is here set to 1.

Outlook

CLAS12 is working on upgrading the luminosity by a factor of two. Assuming this goes on as planned we can expect about 5 times more data to collected.

Al based improvements in the tracking reconstruction at CLAS12 show an average 30% increase in the efficiency for 3 charged particles. The data already taken at CLAS12 is about to be reprocessed with the new tracking improvements.

In total, we can expect a factor of 6 increase in available statistics from already approved CLAS12 experiments.

Conclusion

- > The near-threshold J/ ψ photoproduction cross sections are related to J/ ψ production mechanism and the nucleon gluonic form factor.
- This also provides unique insight about the structure of nucleons on which J/ψ is produced, such as their mass radius.
- We're aiming for a first measurement directly comparing the J/ψ photoproduction cross section on proton and neutron.
- ▶ The analysis of data at CLAS12 is ongoing and well advanced.

Backup Slides

P_c^+ resonances with CLAS12

• CLAS12 should be able to place upper limits on the branching fraction $B(P_C^+ \rightarrow J/\psi p)$ and $B(P_C^+ \rightarrow J/\psi n)$.

P_c^+ Models

Hadronic molecules: Weekly coupled charmed baryon and charmed meson.

Hadro-charmonium states: compact bound cc state and light quarks.

Quarks in a bag: Two tightly correlated diquarks and an antiquark.

p, ω and φ mesons

Plotted here is the invariant mass of e⁺e⁻ produced on a bound proton in the deuteron target.

 \triangleright ϕ mesons are clearly resolved.

p and ω mesons are unresolvable but clearly present.

e+ e- Invariant Mass

Cross Section Calculation

We can calculate the total cross section as:

 $\sigma_{0}(E_{\gamma}) = \frac{N_{J/\psi}}{N_{\gamma} \cdot \eta_{T} \cdot \omega_{c} \cdot Br \cdot \epsilon(E_{\gamma})}$

Where:

- \triangleright N_{J/ ψ} is the J/ ψ yield in each E_{γ} bin
- > N_{γ} is the sum of real and virtual photon flux
- > η_T is the integrated luminosity
- $\triangleright \omega_c$ is the Bethe Heitler normalisation factor
- Br is the branching ratio (~6%)
- $\blacktriangleright \epsilon(E_{\gamma})$ is the acceptance in each E_{γ} bin

