Update on the dilepton analysis on RGA: TCS and photoproduction of J/ψ

Pierre Chatagnon, for the dilepton group CLAS collaboration meeting – Jefferson Lab

8th of November 2023

Outline

Ш

П

IV

V

V

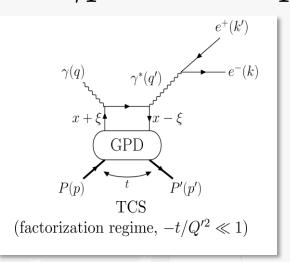
Motivations, general considerations and planning

Spring 2019 Pass 2: Comparison with pass I and first look at MC/data comparison

Lepton PID using machine learning

J/ψ event selection and resolution

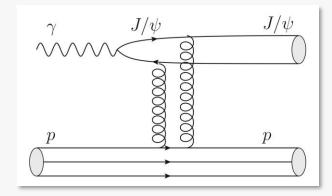
Maximum likelihood fit for the extraction of the TCS parameters


Take-aways and timeline for future work

Motivations for dilepton final state measurement

Timelike Compton Scattering

TCS:
$$\gamma p \to e^+ e^- p'$$

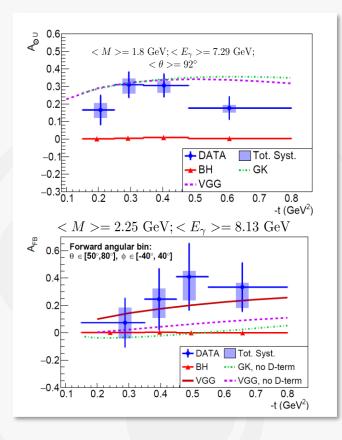


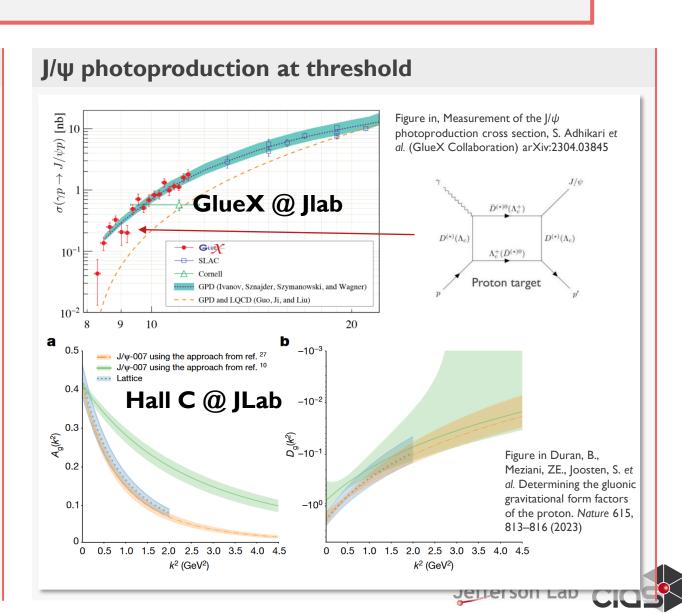
$$\frac{d^4 \sigma_{INT}}{dQ'^2 dt d\Omega} \propto \frac{L_0}{L} \left[\cos(\phi) \frac{1 + \cos^2(\theta)}{\sin(\theta)} \text{Re}\mathcal{H} + \dots \right]$$

$$\frac{d^4 \sigma_{INT}}{dQ'^2 dt d\Omega} = \frac{d^4 \sigma_{INT} \mid_{\text{unpol.}}}{dQ'^2 dt d\Omega} - \nu \cdot A \frac{L_0}{L} \left[\sin(\phi) \frac{1 + \cos^2(\theta)}{\sin(\theta)} \text{Im} \mathcal{H} + \dots \right]$$

J/ψ photoproduction at threshold

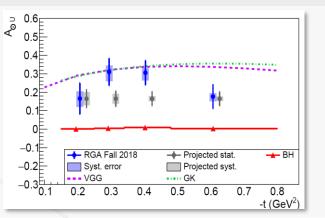
$$\gamma p \to J/\psi \ p \to e^+e^-p'$$


- The t-dependence of the cross-section allow to access gluon Gravitational Form Factors (GFFs), mass radius of the nucleon and gluon GPDs (under 2-gluon exchange assumption and no open-charm contributions)
- Model-dependent limit on the branching ration of the Pc pentaquark.

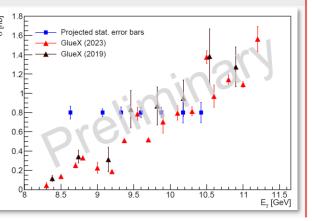

Publication status

Timelike Compton Scattering

First Measurement of Timelike Compton Scattering, P. Chatagnon et al. (CLAS Collaboration), Phys. Rev. Lett. 127, 262501 (2021)


- Hint for the universality of GPDs
- Importance of the D-term in the GPD parametrization

Goals and plans

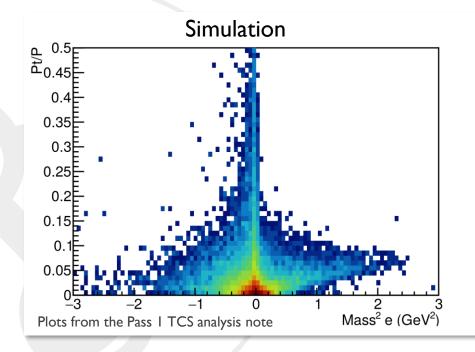

Timelike Compton Scattering

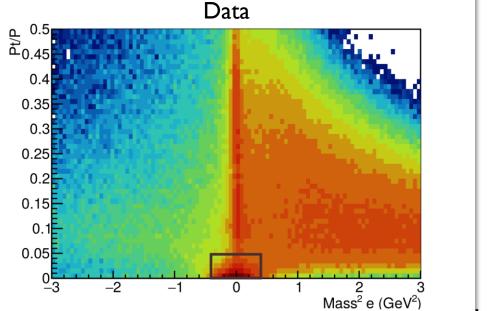
- Full statistics of RG-A will allow to divide error bars by factor 2.
- Potentially use them in GPD fit.

J/ψ photoproduction at threshold

- Statistics competitive with GlueX 2019 analysis
- Independent cross-check of the ~9
 GeV cusp
- Enough statistics to extract tdependence and GFFs

ID		Name :	Start Date :	End Date	S	ер, 23		Oct, 23			No			Nov, !3			Dec, 23				Jan, 24				Feb, 24				Mar, 24			or, 24			May, 24			Jun, 24				
טו	•	name :	Start Date :	End Date :	((03 1	10 1	17 2	4 01	1 08	3 15	22	29	05	12		20 0	3 10	17	24	31	07	14	21 2	8 04	11	18	25	03	10 1	17 24	4 31	07	14	21 2	3 05	12	19	26	02 0	9 16	
1		Lepton Al PID	Sep 18, 2023	Dec 08, 2023																								Н	н					7								
2		Data processing	Oct 09, 2023	Jan 02, 2024																																						
4		Energy loss corrections	Sep 18, 2023	Oct 27, 2023									-																													
5		Momemtum correction	Jan 22, 2024	Apr 09, 2024																			+ [
9		Fiducial cuts	Jan 02, 2024	Feb 12, 2024																	-							Н														
6		Momentum smearing	Jan 22, 2024	Apr 10, 2024																			-																			
7		Radiative correction validations	Sep 18, 2023	Dec 08, 2023																																						
8		Radiative corrections	Dec 11, 2023	Mar 01, 2024														-																								
10		Systematics	Apr 22, 2024	Jun 10, 2024																														-								
11		Analysis note writting	Sep 18, 2023	May 31, 2024																																						
12		Article writting	Apr 23, 2024	Jun 18, 2024																																						



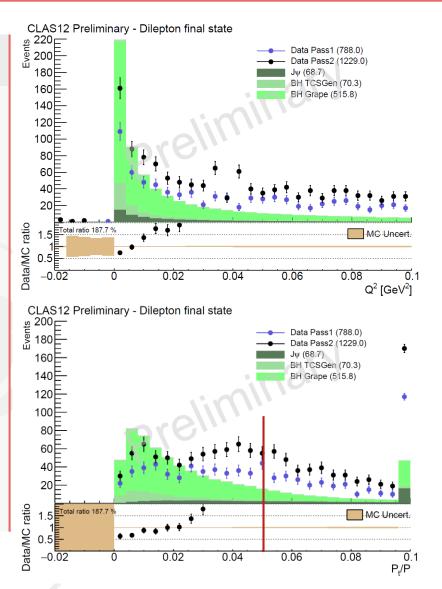

General analysis strategy

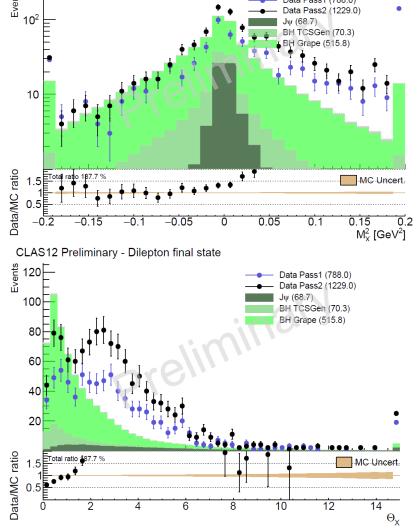
1) CLAS12 PID + Positron NN PID

$$ep \to (e')\gamma p \to (X)e^+e^-p'$$

$$p_X = p_{beam} + p_p - p_{e^+} - p_{e^+} - p_{p'} \longrightarrow 2) |M_X^2| < 0.4 GeV^2 \longrightarrow 3) |\frac{Pt_X}{P_X}| < 0.05 \text{ or } Q^2 < 0.1 \text{ GeV}^2$$

Jenerson Lab

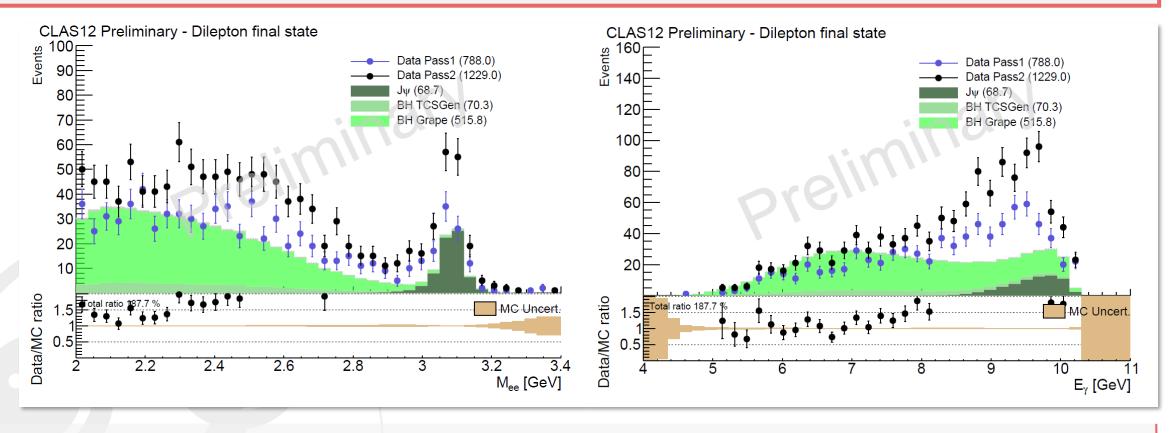

II - Pass 2 data: first look at Spring 2019



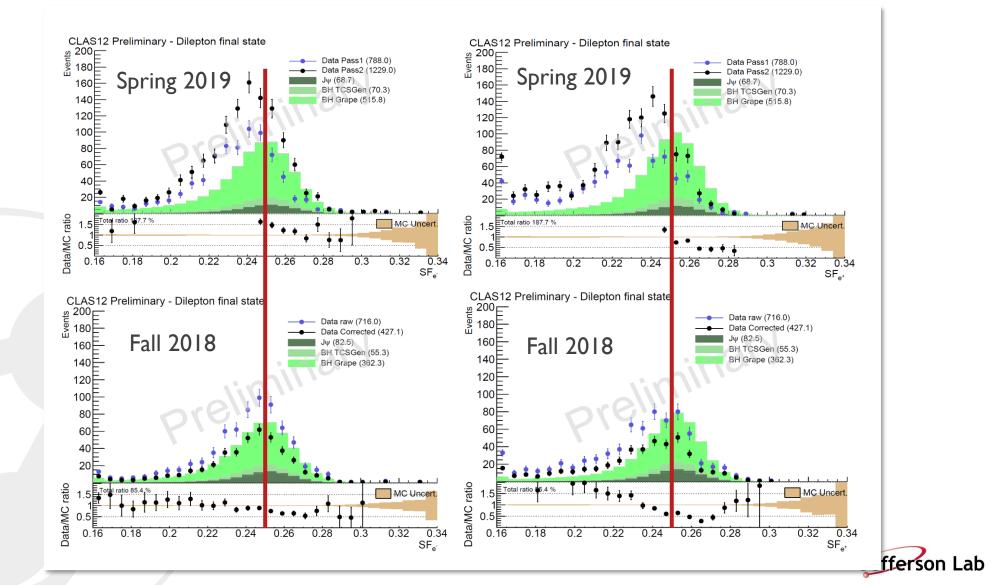
Comparison of data and MC (I)

Event selection

- Event topology:
 - exactly one electron in FD
 - exactly one positron in FD
 - exactly one proton
 - anything else
- Lepton momenta > 1.7 GeV
- Sampling Fraction > 0.15
- Lepton Al PID score > 0.05 (trained on pass I simulation)
- Exclusivity cuts:
 - |MM²|<0.4 GeV²
 - |Q²|<0.1 GeV²

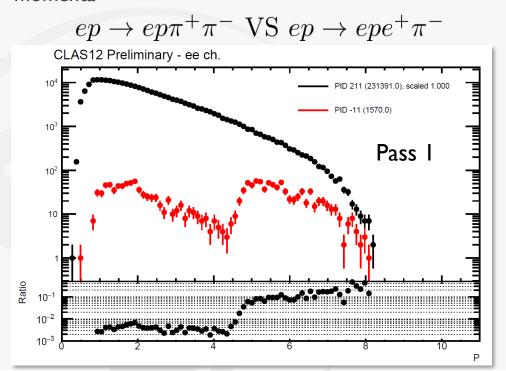


CLAS12 Preliminary - Dilepton final state


Comparison of data and MC (2)

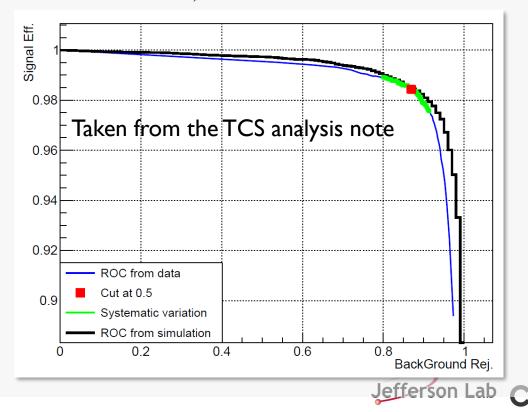
- Same behavior is seen in Spring 19 and Fall 18 data: the large Q2 background must be subtracted before calculating any cross-section
- We will use the same-charge lepton event method to do so ()
 - → outbending dataset is essential

Sampling fraction MC/Data mismatch



III - Lepton PID using machine learning

Motivations and previous work


Motivations

- Above the HTCC, threshold both pions and leptons produce a HTCC signal. In the EB, only ECAL provide a separation between the two.
- ep \rightarrow ep $\pi^+(\pi^-)$ is a large background at large positron momenta

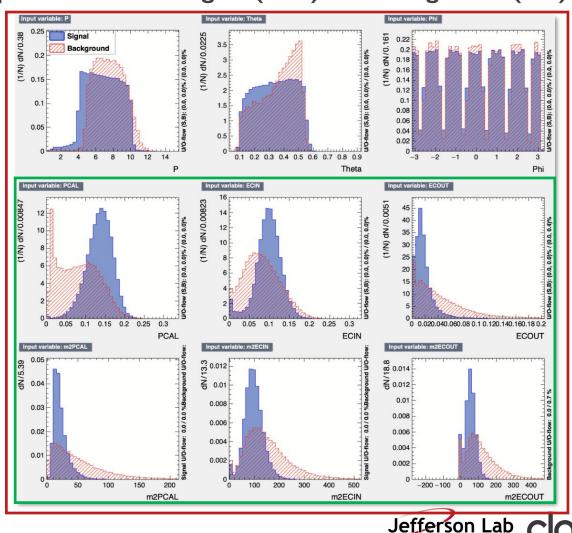
Previous work and motivations

- Long standing feature, already solved for the TCS publication
- Use the layer segmentation of the ECAL to provide separation Variables used: SFs and m2 of PCAL, ECIN, ECOUT Method tested: NN, BDT

Current status

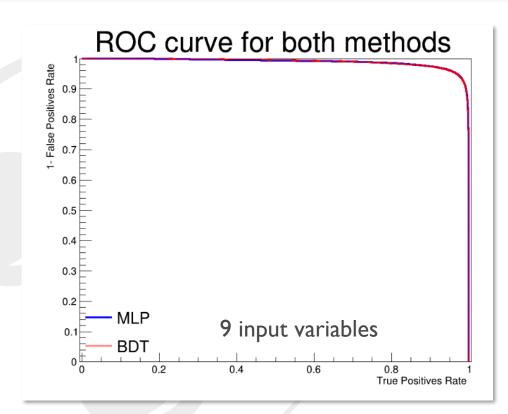
All material of this section provided by M. Tenorio Pita

Approach


- For both electrons and positrons, and for each RGA configuration:
- $2 (e^{+}/e^{-}) \times 3 (Spring 19/Fall 18 in/out) = 6 classifiers$
- Use the layer segmentation of the ECAL to provide separation
- Variables used: P, θ , ϕ , SFs and m2 of PCAL, ECIN, ECOUT Method tested: NN, BDT
- Trained on simulation:

Signal: flat e^{+/-} distribution, reconstructed as e^{+/-}

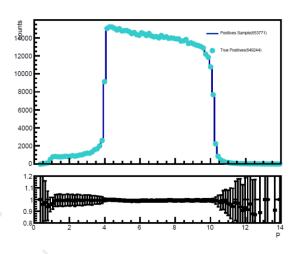
Background: flat $\pi^{+/-}$ distribution, reconstructed as $e^{+/-}$

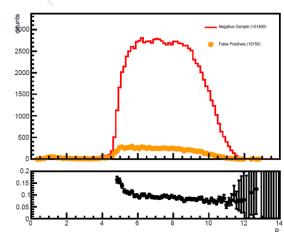

Only RGA Spring 2019 for now

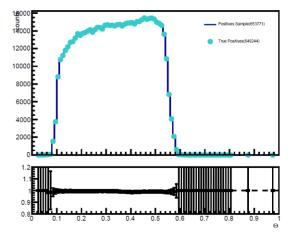
Input variables for signal (blue) and background (red)

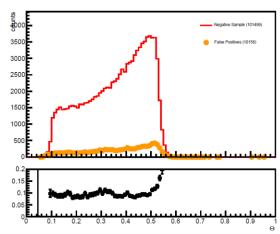
Performances

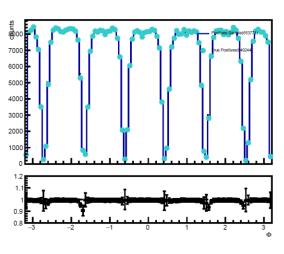
- We tested both 6 and 9 input variables, for 2 methods
 NN and BDT.
- Signal efficiency: 99.4 %
- Background reduction: 10%

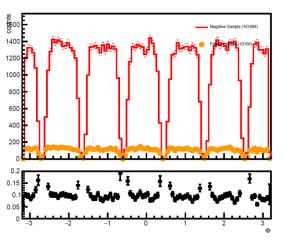

NN 6 var.	Actual e+ (653771)	Actual π+ (101499)
Predicted e+	647688	12805
Predicted π+	6083	88694
	TPR 99.1 %	FPR 12.6 %
NN 9 var.	Actual e+	Actual π+
	Actual e+ 649244	
9 var.		π+

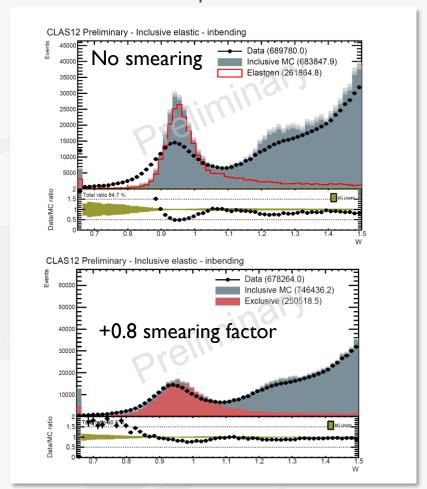



Validation

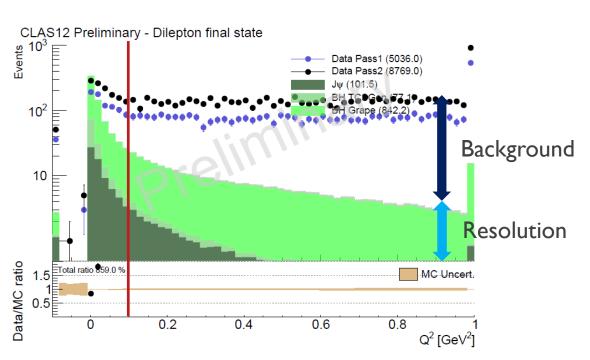

- Signal efficiency and background reduction as a function of particle kinematics
- Done on separate samples


NN. 9 Variables



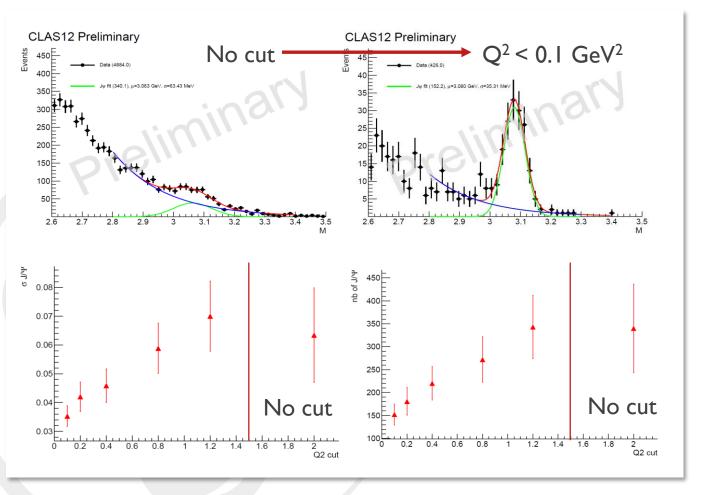

IV - J/ψ event selection, resolution and cross-section

Motivations

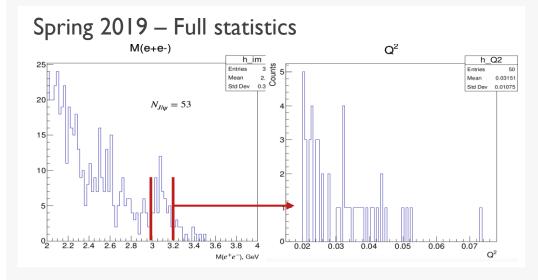

Inclusive elastic events

 In Pass I data, the smearing of the MC is key to understand the elastic peak resolution

Inclusive elastic events


- Although photo-production events are generated (Q²=0 GeV),
 the reconstructed virtuality of the incoming photon is large
- If the data resolution is not well reproduced by MC, the tail will be mis-reproduced and thus the extracted efficiency

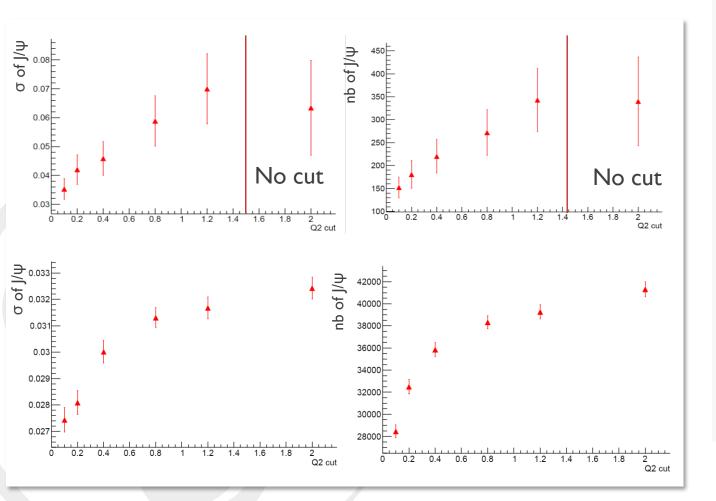
Consequence for the number of J/ψ


• The J/ ψ photoproduction yield should depend on the Q2 cut similarly in data and simulation

Maximum virtuality of the incoming photon

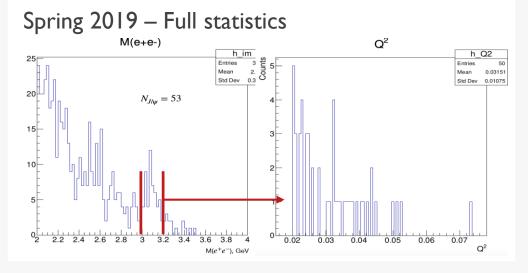
$$ep \rightarrow e'J/\psi \ p' \rightarrow e'l^+l^-(X)$$

 Using tagged photo-production events, one can measure the virtuality of the incoming photon with only the FT resolution involved



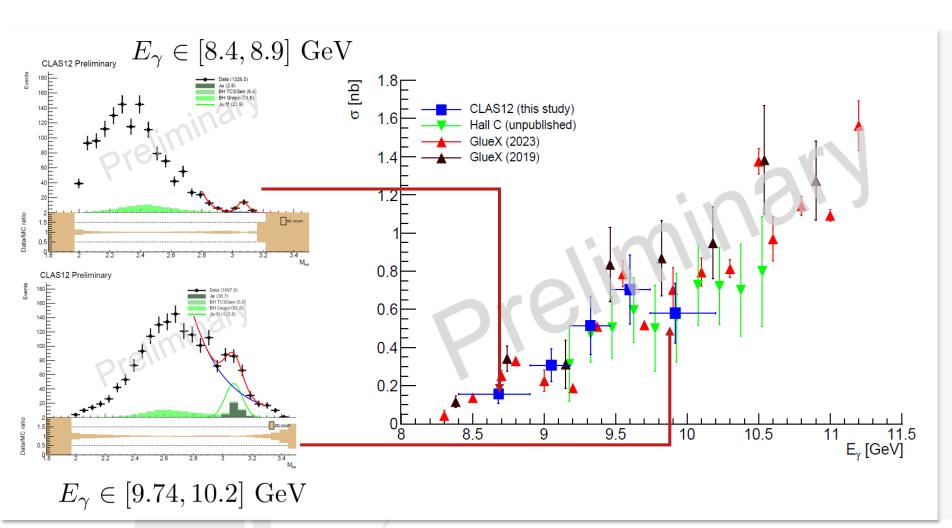
Material provided by M. Tenorio Pita

Consequence for the number of J/ψ


• The J/ ψ photoproduction yield should depend on the Q2 cut similarly in data and simulation

Maximum virtuality of the incoming photon

$$ep \rightarrow e'J/\psi \ p' \rightarrow e'l^+l^-(X)$$

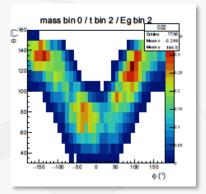

 Using tagged photo-production events, one can measure the virtuality of the incoming photon with only the FT resolution involved

Material provided by M. Tenorio Pita

Effect on the CS extraction

- Acceptance calculated using J/ψ photoproduction MC events and no Q² cut
- No cross-normalization with BH
- Fit using gaussian + exponential

V-TCS observable extraction: maximum likelihood approach


Motivations and formalism

All material provided by D. Glazier

Limitation of the current approach

Both non-trivial angle dependence and non-trivial angular integration...

$$\frac{d^4 \sigma_{INT}}{dQ'^2 dt d\Omega} = \frac{d^4 \sigma_{INT} \mid_{\text{unpol.}}}{dQ'^2 dt d\Omega} - \nu \cdot A \frac{L_0}{L} \left[\sin(\phi) \frac{1 + \cos^2(\theta)}{\sin(\theta)} \text{Im} \mathcal{H} + \dots \right]$$

... makes the naive fitting procedure not straight forward to interpret

What about the pure TCS contribution?

$$\sigma(\gamma p \to e^+e^-p) = \sigma_{BH} + \sigma_{INT} + \sigma_{TCS}$$

Maximum likelihood fit

$$\begin{split} I(\theta,\phi,hP) = &\sigma_{BH} + \sigma_{TCS} + \sigma_{INT} \\ I(\theta,\phi,hP) = &B \frac{1 + \cos^2(\theta)}{\sin^2(\theta)} + T(1 + \cos^2(\theta)) \\ &+ A \frac{1 + \cos^2(\theta)}{\sin(\theta)} (ReM\cos(\phi) - hP.ImM\sin(\phi)) \end{split}$$

If our data distribution, f, depends on an acceptance function $\eta(x_i)$ and a physics model $I(x_i:\theta_j)$:

$$f(x_i:\theta_j) = I(x_i:\theta_j).\eta(x_i)$$

Then we can approximate p by summing over M accepted Monte-Carlo events.

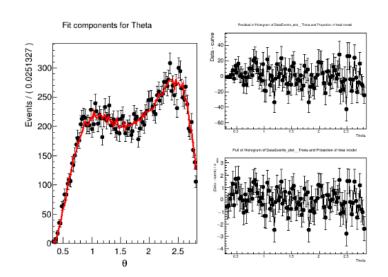
$$p(x_i : \theta_j) = \frac{I(x_i : \theta_j)\eta(x_i)}{\sum_{s}^{M} I(x_{i,s} : \theta_j)}$$

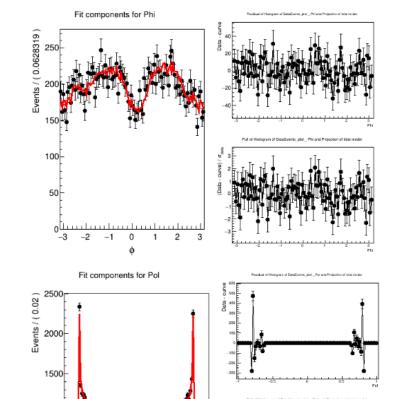
$$\begin{split} L(\theta_j,Y) &= \prod_k^N p(x_{i,k}:\theta_j) e^{-Y} \frac{Y^N}{N!} \\ - \ln L(\theta_j,Y) &= -\sum_k^N \ln[\frac{I(x_{i,k}:\theta_j)}{\sum_s^M I(x_{i,s}:\theta_j)}] + Y - N \ln Y - \sum_k^N \ln \eta(x_{i,k}) \\ \mathcal{L}(\theta_j,Y) &= -\ln L(\theta_j,Y) = -\sum_k^N \ln \frac{I(x_{i,k}:\theta_j)}{\sum_s^M I(x_{i,s}:\theta_j)} + Y - N \ln Y \end{split}$$

Current status

https://indico.jlab.org/event/343/contributions/5450/attachments/4585/5691/GlazierBruFit

Maximum Likelihood Approach Gen with truth


Reproduce input parameters ?
BH = 0.6; ImM = 0.7; TCS = 0.2
Results


BH 5.5324e-01 +/- 1.60e-02

ImM 8.1496e-01 +/- 3.21e-02

TCS 2.5344e-01 +/- 1.72e-02

Slight bias from BH to TCS ?

1000

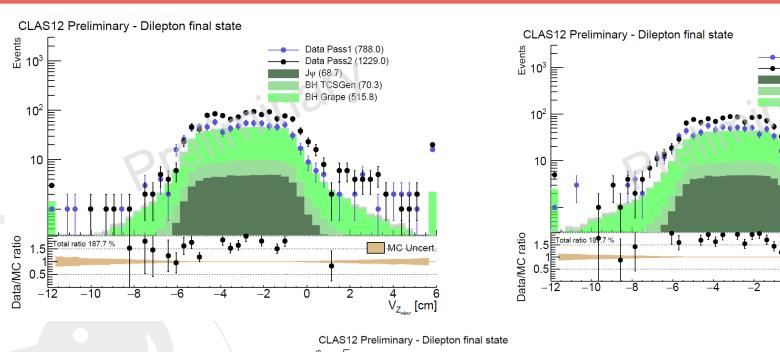
500

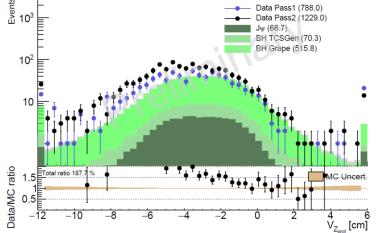
- Method based on brufit
- Tested on MC only
- Fitted function

Summary and outlook

- We have established a plan to reach both a new TCS and a first J/ ψ publication on RGA.
- The work force matches the need: Derek (brufit for TCS), Kayleigh (TCS on RGC), Mariana (J/ ψ on RGA), Pierre (TCS and J/ ψ on RGA), Richard (J/ ψ on RGA and RGB), Rafo (Simulation), Stepan (J/ ψ on RGA).
- Spring 19 Pass 2 dataset looks good, with similar issue than Pass 1 (Resolution and high-Q² background).
- Al PID for lepton is well underway and consistent with Pass I analysis.
- Maximum likelihood fit method is being developed for TCS observable extraction.

					Sep, 23		3 Oct,			ct, 23			Nov, 3			Dec, 23				Jan, 24					Feb, 24			Mar, 24			Apr, 24				May, 24				un, 24	ı	
ID) !	Name	: Start Date :	End Date	(03	10	17	24	01 (08 1	15 2	22 2	9 05	12	19	26 (3 10	17	24	31	07	14	21	28 (04 1	1 18	25	03 1	0 17	24	31	07	14	21 2	8 05	12	19 2	6 0	2 09	16	23
1		Lepton Al PID	Sep 18, 2023	Dec 08, 2023																																					
2		Data processing	Oct 09, 2023	Jan 02, 2024																		7																			
4		Energy loss corrections	Sep 18, 2023	Oct 27, 2023															H			-																			
5		Momemtum correction	Jan 22, 2024	Apr 09, 2024																		•											-11								
9		Fiducial cuts	Jan 02, 2024	Feb 12, 2024																•																					
6		Momentum smearing	Jan 22, 2024	Apr 10, 2024																		-																			
. 7		Radiative correction validations	Sep 18, 2023	Dec 08, 2023																																					
8		Radiative corrections	Dec 11, 2023	Mar 01, 2024													-																								
10	0	Systematics	Apr 22, 2024	Jun 10, 2024																													-								
11	1	Analysis note writting	Sep 18, 2023	May 31, 2024																																					
12	2	Article writting	Apr 23, 2024	Jun 18, 2024																																					


Back-up



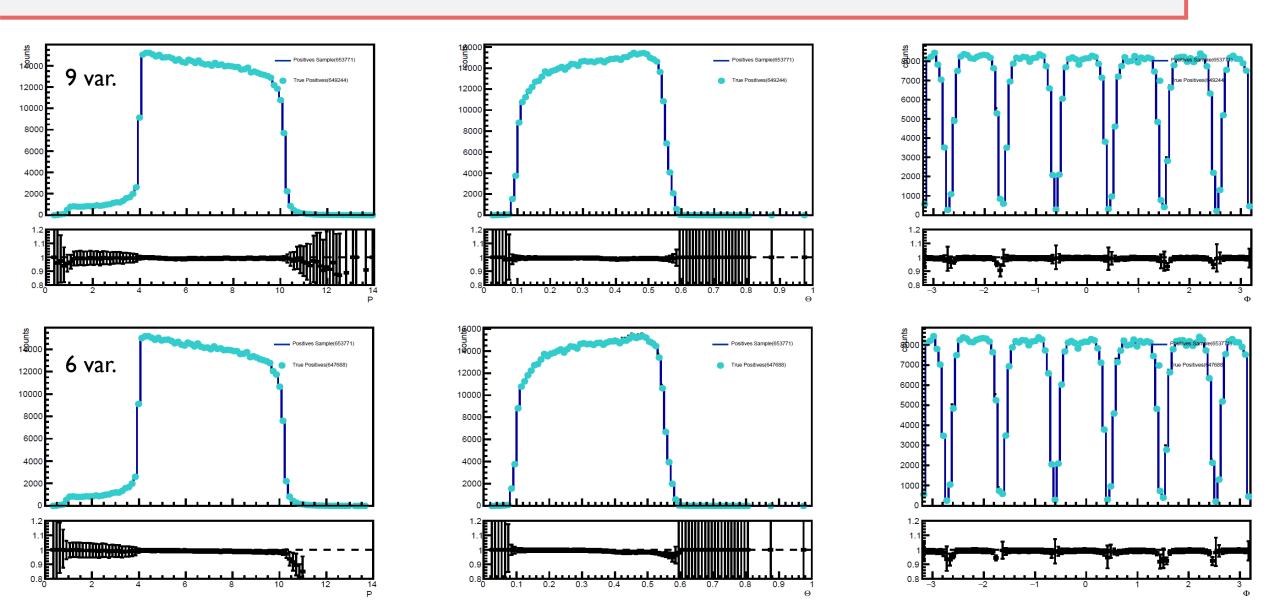
II - Pass 2 data: first look at Spring 2019

Spring 19 Pass 2: Vertices

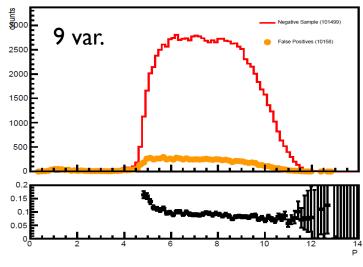
Data Pass1 (788.0)

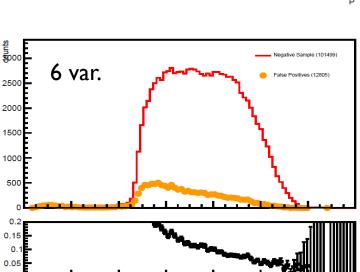
Data Pass2 (1229.0)

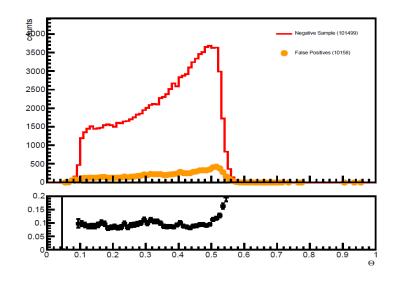
BH TCSGen (70.3)

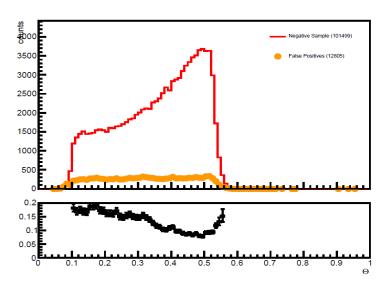

BH Grape (515.8)

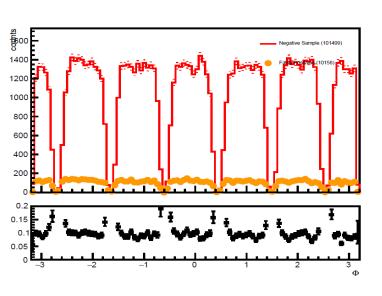
V_{Z_{posi}} [cm]


Jψ (68.7)


III - Lepton PID using machine learning


Validation - Efficiency




Validation - Contamination

