Updates on the analysis of J/ ψ photoproduction on the proton

Pierre Chatagnon 8th of February 2023

Outline

Motivations and timeline

Data, Monte-Carlo Samples and analysis tools

Background modelization and normalization

Results

I – Motivations, general considerations and timeline

Motivations for dilepton final state measurement

J/ψ photoproduction at threshold

$$\gamma p \to J/\psi \ p \to e^+ e^- p'$$

- The t-dependence of the cross-section allow to access gluon Gravitational Form Factors (GFFs), mass radius of the nucleon and gluon GPDs (under 2-gluon exchange assumption and no open-charm contributions)
- Model-dependent limit on the branching ration of the Pc pentaquark.

General analysis strategy

1) CLAS12 PID + Positron NN PID

$$ep \rightarrow (e')\gamma p \rightarrow (e')J/\psi \ p' \rightarrow (X)e^+e^-p'$$

$$p_X = p_{beam} + p_p - p_{e^+} - p_{e^+} - p_{p'} \longrightarrow 2) |M_X^2| < 0.4 GeV^2 \longrightarrow 3 |Q^2 < 0.5 \text{ GeV}^2$$

Event selection

- Event topology:
 - exactly one electron in FD
 - exactly one positron in FD
 - exactly one proton
 - anything else
- HTCC and ECAL hits in the same sector
- HTCC lepton time within 2ns

- Lepton momenta > 1.7 GeV
- Proton in the FD
- Sampling Fraction > 0.15
- Lepton AI PID score > 0.05 (trained on pass 2 simulation)
- Exclusivity cuts:
 - |MM²|<0.4 GeV²
 - |Q²|<0.5 GeV²

Timeline for the tools and task for a dilepton publication

		Name	Start Date	End Data	Sep	, 23			Oct,	t, 23			Nov	v, 23			Dec, 2	3			Jan, 24			Fe	et, 2	4		Mar, 2	24			Apr, 2	4		Μ	lay, 24			Ju	un, 24	4		
		Name .	Start Date :	End Date :	03	10	17	24	01	08 1	15 2	22 2	29 0	05 12	2 19	26	03	10 1	17 24	31	1 07	14	21	28 0)4	11 18	25	03	10	17 2	4 3	1 07	14	21	28	05 1	12	19 2	6 02	2 09	9 16	6 23	3
	1	Lepton AI PID	Sep 18, 2023	Dec 08, 2023														D	40	H	Ε—	-				_	-		_	-	+	-										0	
=	2	Data processing	Oct 09, 2023	Jan 02, 2024																Þ	Ð	θ	N	E																	•	<u>Б</u>	
=	4	Energy loss corrections	Sep 18, 2023	Oct 27, 2023									-			-		-				_				In	p	20	re	ess												ă	
	5	Momemtum correction	Jan 22, 2024	Apr 09, 2024					_ A	T	E											Η										-										Ň	
	9	Fiducial cuts	Jan 02, 2024	Feb 12, 2024															[•		n	pr	08		es	-						-									S.	
=	6	Momentum smearing	Jan 22, 2024	Apr 10, 2024							. C)(1 C	NE								4						-	4													n	
=	7	Radiative correction validations	Sep 18, 2023	Dec 08, 2023															DC)	١E						U	ιs	Ld	ru	e											n	
H	8	Radiative corrections	Dec 11, 2023	Mar 01, 2024													-																	n j	pro	og	re	ess				let	
	10	Systematics	Apr 22, 2024	Jun 10, 2024																																						Ň	
	11	Analysis note writting	Sep 18, 2023	May 31, 2024																																						22	
=	12	Article writting	Apr 23, 2024	Jun 18, 2024										Ir	ו p	rc	gr	'e !	55																					÷		4	

- On time for PID, Data processing and radiative corrections
- Still some tools required/preferred for the analysis (Momentum corrections/smearing)
- Still on track for analysis note submission by the summer

II – Data, Monte Carlo samples and analysis tools

Data samples

- Analysis on Pass 2 data only
- *jpsitcs* train is used
- All main Fall 18 (Inbending and outbending) and Spring 19 runs are processed.
- The supplemental runs of Fall 2018 (run number <5000) are not used.

Integrated luminosity calculation

- The QADB tool is used (<u>https://github.com/JeffersonLab/clasI2-qadb</u>) to retrieve the accumulated charge per DST files
- The tag OkForAsymmetry is used, with additional post-checks (remove low current runs, etc)
- The RCDB interface of clas I 2root is used (https://github.com/JeffersonLab/clas I 2root/blob/a 7ba949fc92ed355e47f993f8342b0acb4b9303d/Ru nRoot/Ex8_RcdbReader.C) to query the RCDB for each run and retrieve Beam current and Requested beam current
- Accumulated charge is computed per beam current for each configuration (In/Out Fall 18, Spring 19)

Config.	Ве	am current	S	Total
Fall 18 Inbending	45 nA 26.312 mC	50 nA 4.000 mC	55 nA 5.355 mC	35.667 mC
Fall 18 Outbending	40 nA 11.831 mC	50 nA 20.620 mC		32.451 mC
Spring 19	50 nA 45.994 mC			45.994 mC

MC samples

- 3 Generators are used: TCSGen (real photon BH), JPsiGen (Jpsi signal), Grape (Virtual photon BH)
- Simulations are processed through OSG with pass 2 configuration

Generator		С	onfig / Beaı	m currents		
		Fall 18 In.		Fall 18	8 Out.	Sp. 19
	45 nA	50 nA	55 nA	40 nA	50 nA	50 nA
Grape			8.2M each			6.7 M
TCSGen			2M each			1.5 M
JPsiGen			2M ea	ach		
JPsiGen (No rad.)			3M ea	ach		
		Total of 24	MC samples			

Radiative corrections

- Inclusion of radiative effect is done in all generators according to formulas in: Matthias Heller, Oleksandr Tomalak, and Marc Vanderhaeghen. Soft-photon corrections to the bethe-heitler process in the $\gamma p \rightarrow 1+1-p$ reaction. Phys. Rev. D, 97:076012, Apr 2018.
- The JpsiGen and TCSGen generator with radiative effect are on Github
 - <u>https://github.com/JeffersonLab/JPsiGen/tree/Rad_Corr</u>
 - <u>https://github.com/JeffersonLab/TCSGen/tree/Rad_Corr</u>
 - <u>https://github.com/PChatagnon/Grape_Rad_Corr</u>
 ...not yet on OSG
- A full note on the algorithm is ready and will be included in the analysis note.
- The work was presented at the CLAS collaboration meeting in July 23:

https://indico.jlab.org/event/724/contributions/13105/attachme nts/10013/14848/RadiativeCorrections_for_BH.pdf

Lepton PID using AI

- Multiple evidences for large contamination from pions in the positron sample at high momenta (P>4.5 GeV)
- We developed a PID algorithm to use on top of the EB PID for leptons (electron, positron, muon(soon))
- Multivariate classifier using calorimeter responses only
 - Extension to Pass2 to the work that was done for the Pass1 TCS analysis
- One classifier per configuration and lepton flavor (6 in total)
- Soon available through Iguana
- Trained on simulation and validated on data

Work by Mariana Tenorio

Other tools

Fiducial cuts/dead paddle cuts

- Pass I fiducial cuts on the PCAL (~ 8-9cm on V and W)
- Additional dead paddle cut, cross-check with Valerii Klimenko

Radiated photon correction

- Loop over photons in the event
- Add 4-vectors to the lepton if $\Delta \theta < 1.5$ deg.

Plots from Mariana Tenorio

Github repository

• Github repository getting populated, some scripts still missing

https://github.com/PChatagnon/TCS_Analysis

Missing tools

- Not included in the following:
 - Energy loss / Energy corrections
 - Momentum smearing
 - Edge-based fiducial cuts

IV – Background modelisation and normalization

Data/MC normalization

• Each event is weighted by:

$$\omega = rac{\mathcal{L} \cdot \sigma_{tot}}{nb_{GEN}}$$
 for generator providing integrated CS,

• Where the luminosity is obtained from target specification:

$$\mathcal{L} = \frac{l \cdot \rho \cdot N_A \cdot C \cdot Q}{e} = 1316.875 \cdot Q(\text{in mC})$$

$$\omega = rac{\mathcal{L} \cdot w_{GEN}}{nb_{GEN}}$$
 for weighted generator.

Length of the target I = 5 cmDensity of the target $\rho = 0.07 \text{ g/cm}^3$ Avogadro constant $N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$ Unit charge $e = 1.6 \times 10^{-19} \text{ C}$ Conversion to pb $C = 10^{-36}$

https://clasweb.jlab.org/rungroups/tlc/wiki/images/e/e7/Normalization_MC_Data-5.pdf

Comparison data/MC – Fall 2018 inbending

- Plotting conventions
 - Color-filled histograms are *stacked*, ie they show the total number of events with contributions for different channels "on top of each other"
 - Marker histograms are not stacked and simply superimposed

Comparison data/MC – Fall 2018 outbending

Comparison data/MC – Spring 2019

Overall strategy for background modelization

Event mixing

I)

- From data randomly select electron, positron, proton (from different events)
- Construct kinematics and make sure they are within the region of interest (M_{ee}>2 GeV, |MM|²<0.4 GeV², Q²<2 GeV²)
- 2) Reweight events to match data in the training region
- 3) Validate the weights on region B
- 4) Apply weights on region C and obtained BG-subtracted yields

Reweighting methods

Binned weights

- Compute ratio (Data-Signal)/(Mixed_BG), and apply to event from the mixed BG sample
 - Inconvenient method
 - I) Need to track bin indices
 - 2) Curse of dimensionality: the more variable, the less events per bins

Boosted decision trees

- Use a BDT to compute a weight event-by-event so that source and target distribution match
- Using method from Alex Rogozhnikov 2016 J. Phys.: Conf. Ser. 762 012036
- Code available here: (https://github.com/arogozhnikov/hep_ml)
 - Advantages
 - As many variables as needed can be matched
 - 2) No/less of a dimensionality curse
 - Easy to use, no need to handle complex bin indexing

Reweighting method using BDT

Using BDT reweighting from Alex Rogozhnikov 2016 J. Phys.: Conf. Ser. 762 012036 (https://github.com/arogozhnikov/hep_ml)

Reweighting validation – Fall 2018 inbending (I)

Reweighting validation – Fall 2018 inbending (II)

Full comparison data/MC – Fall 2018 inbending (1)

Full comparison data/MC – Fall 2018 inbending (2)

```
Q^2 \in [0.0, 0.5] GeV^2 Region C (Signal)
```

Final state particle kinematics

CLAS12 Preliminary - Dilepton final state

10

35

Normalization factor

• Normalization factor can be computed as:

$$\omega_c = \frac{N_{Data} - N_{BG}}{N_{SIM BH}}$$

- Here this would be 49.6% for inbending 2018 with large statistical error
- Requires larger BG samples
- To be continued

V - Results

29/43

Cross-section computation

Number of J/Psi

- All data samples are combined and **fitted together**
- Double-gaussian with common mean is used to fit the peak
- Error bar on number of J/Psi is set to sqrt(N)
- Systematic study to be performed on the fit function

$$\sigma_j = \frac{N_{J/\psi j}}{\mathcal{F}_j \cdot \mathcal{L} \cdot \omega_{cj} \cdot B_r \cdot \epsilon_j \cdot \epsilon_{Rad/j}}$$

All Data fits

Photon flux

 Real and virtual flux are provided event by event by the JPsiGen Generator:

https://github.com/JeffersonLab/JPsiGen/blob/eb40dd934bb9f022873 414a57e0dad9d1ccbcbdf/src/KinFunctions.cc#L38

2) The integral over the range of energy of the bin j is done using the integral/mean theorem:

$$\mathcal{F}_{c/j} = \int_{j} \mathcal{F}_{c} dE = \Delta E \frac{1}{N} \frac{\sum_{i=1}^{N} \mathcal{F}_{c}(E_{GEN/i}) \cdot \omega_{i}}{\sum_{i=1}^{N} \omega_{i}}$$

3) Each flux (one per configuration) is multiplied by the corresponding accumulated charge:

 $\mathcal{F}_j = \sum_c C_c \cdot \mathcal{F}_{c/j}$ Total number of photon in the bin j in unit of e

$$\mathcal{L} = \frac{l \cdot \rho \cdot N_A \cdot C}{e}$$

Detection efficiency computation

- From the data fit a second order polynomial background function is extracted
- 2) Events are generated according to this background function and added to the Jpsi signal MC sample
- The obtained distribution is fitted with the same function as the data
- 4) The acceptance correction is then:

$$\epsilon_{j} = \frac{\left. \frac{N_{J/\psi} \right|_{j/REC}}{\left. \frac{N_{J/\psi} \right|_{j/RAD}}}$$

All MC fits

Radiative correction

- Jpsi samples without radiative effects are produced
- 2) The radiative correction is defined using the GEN kinematics as:

$$\epsilon_{Rad/j} = \frac{\left. \frac{N_{J/\psi} \right|_{j/RAD}}{\left. \frac{N_{J/\psi} \right|_{j/RAD}}{N_{J/\psi} \right|_{j/GEN}}}$$

Preliminary cross-section as a function of Ey

Selection cut systematics

- Every step of the analysis is repeated with different cuts:
 - Q^2 **DONE**

• Lepton momenta cut **To be done**

- |MM|² To be done
- Proton PID **To be done**

Radiative correction systematic

- The standard CS is extracted using the Radiated Jpsi MC samples and radiative correction
- The alternate is using non-radiated MC samples
- The effect is of the order of 10% (GlueX quoted 8.5%)

Bin volume correction

t-dependence of the cross-section

Integrated t-dependent cross-section

• The integral of the t-dependent cross section is done bin-by-bin: $\sigma = \sum_j \frac{d\sigma}{dt} \Big|_j \cdot \Delta t_j$ • And compared to the total CS

• Qualitative good agreement !

Jefferson Lab

Systematic studies on the t-dependent crosssection

Take-aways and path going forward

The JPsi analysis is at an advanced stage.

V

- Data and MC samples have been produced, the framework to analyze them is final.
- Some common tools remain to be developed and used in the analysis.
- Current effort in on finalizing the background modelization and normalization factor (Final results for the collaboration meeting).
 - A release note will be ready by early March at the latest. An analysis note will be ready for the summer

Sampling fraction MC/Data mismatch

Lepton PID using machine learning (Status as of October 2023)

Motivations and previous work

Motivations

- Above the HTCC, threshold both pions and leptons produce a HTCC signal. In the EB, only ECAL provide a separation between the two.
- $ep \rightarrow ep\pi^+(\pi^-)$ is a large background at large positron momenta

Previous work and motivations

- Long standing feature, already solved for the TCS publication
- Use the layer segmentation of the ECAL to provide separation Variables used: SFs and m2 of PCAL, ECIN, ECOUT Method tested: NN, BDT

Current status

All material of this section provided by M.Tenorio Pita

Approach

• For both electrons and positrons, and for each RGA configuration:

2 (e^{+}/e^{-}) x 3 (Spring19/Fall18 in/out) = 6 classifiers

 Use the layer segmentation of the ECAL to provide separation
 Variables used: P, θ, φ, SFs and m2 of PCAL, ECIN, ECOUT Method tested: NN, BDT

• Trained on simulation: Signal: flat $e^{+/-}$ distribution, reconstructed as $e^{+/-}$ Background: flat $\pi^{+/-}$ distribution, reconstructed as $e^{+/-}$

Input variables for signal (blue) and background (red)

Performances

- We tested both 6 and 9 input variables, for 2 methods NN and BDT.
- Signal efficiency: 99.4 %
- Background rate: 10%

NN 6 var.	Actual e+ (653771)	Actual π+ (101499)
Predicted e+	647688	12805
Predicted π+	6083	88694
	TPR 99.1 %	FPR 12.6 %
NN 9 var.	Actual e+	Actual π+
NN 9 var. Predicted e+	Actual e+ 649244	Actual π+
NN 9 var. Predicted e+ Predicted π+	Actual e+ 649244 4527	Actual π+ 10158 91341

Validation on simulation

- Signal efficiency and background reduction as a function of particle kinematics
- Done on separate samples

NN. 9 Variables

Jefferson Lab