Extraction of the cross-section of the near-threshold photoproduction of J/ ψ with the CLASI2 experiment

Pierre Chatagnon

Jefferson Lab, USA pierrec@jlab.org

QNP2024-10th International Conference on Quarks and Nuclear Physics Universitat de Barcelona July 10th 2024

Motivations and previous results

Photoproduction of the J/ ψ meson near its production threshold

Extraction of the cross-section of the near-threshold photoproduction of J/ψ with the CLAS12 experiment – Pierre Chatagnon – 10th of July 2024 – QNP2024

See Y. Guo, X. Ji, Y. Liu, "QCD analysis of near-threshold photon-proton production of heavy quarkonium", PRD (2021) and D. E. Kharzeev, "Mass radius of the proton", PRD (2021)

Recent results from JLab

Extraction of the cross-section of the near-threshold photoproduction of // with the CLASI2 experiment – Pierre Chatagnon – 10th of July 2024 – QNP2024

Figures from S. Prasad

APS/JPS 2023 meeting

presentation at the

 k^2 (GeV²)

Experimental setup and analysis strategy

The CLASI2 detector package

e

Beam

Exclusive dilepton event selection

what we want to measure
$$\gamma p
ightarrow e^+ e^- p'$$

What we can measure with CLAS12 —

$$ep \rightarrow (e')\gamma p \rightarrow (e')e^+e^-p'$$

7/21

Extraction of the cross-section of the near-threshold photoproduction of J/ψ with the CLASI2 experiment – Pierre Chatagnon – 10th of July 2024 – QNP2024

Exclusive dilepton event selection: Exclusivity variables

Extraction of the cross-section of the near-threshold photoproduction of J/ψ with the CLASI2 experiment – Pierre Chatagnon – 10th of July 2024 – QNP2024

Exclusive dilepton invariant mass spectrum

$$ep \to (e')\gamma p \to (X)e^+e^-p'$$

Total cross section computation

I) Number of J/ψ from data

Extraction of the cross-section of the near-threshold photoproduction of J/ψ with the CLAS12 experiment – Pierre Chatagnon – 10th of July 2024 – QNP2024

II) Normalization factor - Overall strategy for the background modelization

I) Event mixing procedure from data :

- Randomly select electron, positron, proton (from different events)
- Construct kinematics and make sure they are within the region of interest:

 $(M_{ee} > 2 \text{ GeV}, |MM|^2 < 0.4 \text{ GeV}^2, Q^2 < 2 \text{ GeV}^2)$

- 2) Reweight events to match data in the training region, using a BDT-based method from <u>Alex</u> <u>Rogozhnikov 2016 J. Phys.: Conf. Ser. **762**</u> <u>012036</u>. Code available <u>here</u>.
- 3) Validate the weights on the validation region.
- Apply weights on the signal region and obtained BG-subtracted yields

II) Normalization factor - Data/MC comparison in the signal region

Results from the CLASI2 experiment

Extraction of the cross-section of the near-threshold photoproduction of J/ψ with the CLAS12 experiment – Pierre Chatagnon – 10th of July 2024 – QNP2024

Kinematic coverage and binning

Preliminary total cross-section results

 Only the dominant normalization systematic (17%) is included in the CLAS12 results.

- Both cross-sections are in agreement and errors (statistical and systematics) are of similar size.
- No clear conclusion concerning a potential dip in the open charm threshold region.

Extraction of the cross-section of the near-threshold photoproduction of J/ψ with the CLAS I 2 experiment – Pierre Chatagnon – 10th of July 2024 – QNP2024

Differential cross section coverage and binning

Preliminary differential cross-section results

Extraction of the cross-section of the near-threshold photoproduction of J/ψ with the CLAS12 experiment – Pierre Chatagnon – 10th of July 2024 – QNP2024

Dipole fit and interpretation in term of mass radius

Toward GFF extraction including CLASI2 data (work in progress)

Model dependent extraction of GFFs

Holographic QCD model

 J/ψ near threshold in holographic QCD: A and D gravitational form factors, Kiminad A. Mamo and Ismail Zahed, Phys. Rev. D 106, 086004,2022

$$\frac{d\sigma}{dt} = \mathcal{N}^2 \frac{e^2}{64\pi (s - M_N^2)^2} \frac{[A(t) + \eta^2 D(t)]^2}{A^2(0)} \cdot \tilde{F}(s) \cdot 8$$

Generalized Parton Distribution model

QCD analysis of near-threshold photon-proton production of heavy quarkonium, Yuxun Guo, Xiangdong Ji, and Yizhuang Liu, Phys. Rev. D 103, 096010.2021

$$\frac{d\sigma}{dt} = \frac{\alpha_{EM} e_Q^2}{4(W^2 - M_N^2)^2} \frac{(16\pi\alpha_S)^2}{3M_V^3} |\phi_{NR}(0)|^2 |G(t,\xi)|^2$$

GFFs in $G(t, \boldsymbol{\xi})$

GFF parametrization ٠

Extraction of the cross-section of the near-threshold photoproduction of J/ ψ with the CLASI2 experiment – Pierre Chatagnon – 10th of July 2024 – QNP2024

Take-aways and outlook

- Photoproduction of J/ ψ has become a *flagship* measurement for *current and future* JLab experiments.
- New cross-section results from the CLASI2 experiment have now been released.
- Current work is dedicated to wrapping-up the analysis note for *publication in* the **next few months**.
- Strong efforts to *interpret these data*, and *expand upon the capabilities of CLAS12* (measurement on deuterium target and muon final state analysis).

Thank you for your attention

Extraction of the cross-section of the near-threshold photoproduction of J/ ψ with the CLAS12 experiment – Pierre Chatagnon – 10th of July 2024 – QNP2024

BACK-UPs

Positron PID

Pion background at large momenta

At high momenta (typically above the HTCC threshold at 4.5 GeV), both pions and leptons will emit Cherenkov light.

Strategy and discriminating variables

- Leptons produce electromagnetic showers and tend to deposit energy in the first layers of the calorimeters.
- Pions are Minimum Ionizing Particles in the GeV region, they deposit small amounts of energy all along their path.
- Two main characteristics to use:

$$SF_{\rm EC\ Layer} = \frac{E_{dep}({\rm EC\ Layer})}{P}$$

2.

$$M_2 = \frac{1}{3} \sum_{U,V,W} \frac{\sum_{\text{strip}} (x-D)^2 \cdot \ln(E)}{\sum_{\text{strip}} \ln(E)}$$

Strategy and discriminating variables

- Leptons produce electromagnetic showers and tend to deposit energy in the first layers of the calorimeters.
- Pions are Minimum Ionizing Particles in the GeV region, they deposit small amounts of energy all along their path.
- Two main characteristics to use:

I.
$$SF_{\text{EC Layer}} = \frac{E_{dep}(\text{EC Layer})}{P}$$

2. $M_2 = \frac{1}{3} \sum_{U,V,W} \frac{\sum_{\text{strip}} (x-D)^2 \cdot \ln(E)}{\sum_{\text{strip}} \ln(E)}$

J/ψ analysis

Data and MC samples

- Analysis on Pass 2 data. All main Fall 18 (Inbending and outbending) and Spring 19 runs are processed.
- Simulations are processed through OSG with pass 2 configuration
 The QADB tool is used to clean-up data and retrieve the accumulated charge per DST files
- The <u>RCDB interface of clas12root</u> is used to retrieve the beam current for each run
- Accumulated charge is computed per beam current for each configuration

Generator		Config / Beam currents / Charge							
	Fall 18 In.			Fall 18 Out.		Sp. 19			
	45 nA 26.312 mC	50 nA 4.000 mC	55 nA 5.355 mC	40 sA 11.831 mC	50 nA 20.620 mC	50 nA 45.994 mC			
Grape		6.7 M							
TCSGen		1.5 M							
JPsiGen	2M each								
JPsiGen (No rad.)	3M each								
	Total o	f 24 MC sampl	les and 3 Data	samples					

SI2 methods in the systematic state state state systematic state stat

- Analysis on Pass 2 data. All *main* Fall 18 (Inbending and outbending) and Spring 19 runs are processed.
- Simulations are processed through OSG with pass 2 configuration
- The <u>QADB tool</u> is used to clean-up data and retrieve the accumulated charge per DST files
- The <u>RCDB interface of clas 2 root</u> is used to retrieve the beam current for each run
- Accumulated charge is computed per beam current for each configuration

	Config / Beam currents / Charge								
	Fall 18 In.			Fall 18 Out.		Sp. 19			
Generator	45 nA 26.312 mC	50 nA 4.000 mC	55 nA 5.355 mC	40 nA 11.831 mC	50 nA 20.620 mC	50 nA 45.994 mC			
Grape		6.7 M							
TCSGen		1.5 M							
JPsiGen	2M each								
JPsiGen (No rad.)	3M each								
Total of 24 MC samples and 3 Data samples									

28

- Inclusion of radiative effect is done in all generators according to formulas in: <u>Matthias Heller et al. Soft-photon corrections to the</u> <u>bethe-heitler process in the $\gamma p \rightarrow 1+1-p$ reaction. PRD</u>
- The JpsiGen, TCSGen generator with radiative effect are on Github, as well as an event converter for Grape ...not yet on OSG
- A full note on the algorithm is ready and will be included in the analysis note.
- The work was presented at the CLAS collaboration meeting in July 23.

Photon flux

2) The integral over the range of energy of the bin j is done using the integral/mean theorem:

$$\mathcal{F}_{c/j} = \int_{j} \mathcal{F}_{c} dE = \Delta E \frac{\sum_{i=1}^{N} \mathcal{F}_{c}(E_{GEN/i}) \cdot \omega_{i}}{\sum_{i=1}^{N} \omega_{i}}$$

3) Each flux (one per configuration) is multiplied by the corresponding accumulated charge:

 $\mathcal{F}_j = \sum_c C_c \cdot \mathcal{F}_{c/j}$

Total number of photon in the bin j in unit of e

4) The results is multiplied by the luminosity factor to recover the correct normalizing factor:

$$\mathcal{L} = \frac{l \cdot \rho \cdot N_A \cdot C}{e}$$

Detection efficiency

- From the data fit a second order polynomial background function is extracted
- 2) Events are generated according to this background function and added to the Jpsi signal MC sample
- The obtained distribution is fitted with the same function as the data
- 4) The acceptance correction is then:

$$\epsilon_j = \frac{N_{J/\psi}\big|_{j/REC}}{N_{J/\psi}\big|_{j/RAD}}$$

- Jpsi samples without radiative effects are produced
- 2) The radiative correction is defined using the GEN kinematics as:

$$\epsilon_{Rad/j} = \frac{\left. N_{J/\psi} \right|_{j/RAD}}{\left. N_{J/\psi} \right|_{j/GEN}}$$

Selection cut systematics

- Every step of the analysis, except normalization factor, is repeated with different cuts:
 - **Q² DONE**
 - |MM|² **DONE**
 - Fit function **DONE**

- Lepton momenta cut **To be done**
- Lepton ID cut **To be done**
- Proton PID To be done

 \rightarrow Implementation of ad-hoc smearing to reproduce resolution in MC and reduce this systematic

be added

Radiative correction effect

- The standard CS is extracted using the Radiated Jpsi MC samples and radiative correction
- The alternate is using non-radiated MC samples
- The effect is of the order of 10% (GlueX quoted 8.5%)

+ Closure test (Implemented but not presented here)

Bin volume correction

Integrated t-dependent cross-section

- The integral of the t-dependent cross section is done bin-by-bin:
- And compared to the total CS

$$\sigma = \sum_{j} \left. \frac{d\sigma}{dt} \right|_{j} \cdot \Delta t_{j}$$

• Good agreement between integrated t-dependent CS and Eγ-dependent CS

Deuterium target and muon final state

- Deuterium data were taken by CLASI2 in 2019/2020.
- Opportunity to measure J/ψ production on (bound) neutron and (bound) proton.
- Alongside this analysis, a framework to explore the muon decay channel was developed.
- This effort is lead by R.Tyson from University of Glasgow.

Taken from R. Tyson PhD analysis, Univ. of Glasgow

Tagged J/ ψ quasi-photoproduction with CLAS12

 $ep \to e'J/\psi \ p' \to e'l^+l^-(X)$

- Analysis conducted by M. Tenorio Pita, ODU.
- In this case, one electron in the Forward Tagger (Low lab angle <5°) and a lepton pair in CLAS12.
- Excellent cross-check of the quasiphotoproduction approach.
- Early results show low statistics, the new data "cooking" including better tracking efficiency will be beneficial for this analysis.
- Other event topologies will be explored.

Other potential J/ ψ analysis using CLAS12 data

- Available data for longitudinally polarized proton target

