QA Monitor Readiness for Pass1 of RGA Outbending Data

Christopher Dilks First Experiment Meeting 22 April 2020

QA Monitoring Timelines

Timelines Link

https://clas12mon.jlab.org/rga/pass1/qa/tlsummary/

subsystem	variables	link	
(dataset)	 beam_spin_asymmetry defined_helicity_fraction electron_FT_yield_normalized_values electron_trigger_yield_normalized_values faraday_cup_charge live_time pim_kinematics_means pim_kinematics_stddevs pip_kinematics_stddevs q2_W_x_y_means q2_W_x_y_stddevs relative_luminosity 	<u>timelines</u>	Monitoring timelines - these are used to perform QA
INBENDING1_QA	 SectorLoss Any_Defect TerminalOutlier LiveTimeGT1 MarginalOutlier TotalOutlier Misc 	<u>timelines</u>	QA timelines - lists files with "defect bits" - this is the QA result
INBENDING1_SUPPLEMENTAL	 electron_FT_yield_QA_Automatic_Result electron_trigger_yield_QA_Automatic_Result electron_FT_yield_QA_epoch_view electron_FT_yield_stddev electron_FT_yield_values electron_trigger_yield_QA_epoch_view electron_trigger_yield_stddev electron_trigger_yield_values faraday_cup_stddev helicity_sinPhi 	<u>timelines</u>	Supplemental timelines - extra / expert QA timelines 2

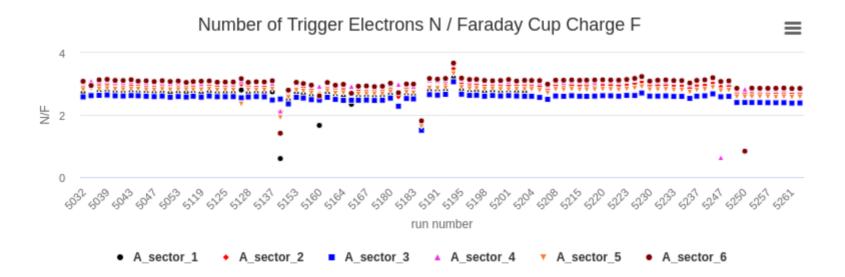
QA Monitoring Timelines

Timelines Link

https://clas12mon.jlab.org/rga/pass1/ga/tlsummary/

to be merged into one set "inbending"

Listed data sets:


- Inbending1: runs 5032 5262
 Inbending2: runs 5300 5419
- Outbending data: need DST files before QA can start

To showcase the features of the QA monitor, these slides will focus on the **Inbending1** dataset

The QA is divided into two parts:

- automatic QA: based on electron yield and FCup charge
- manual QA: based on automatic QA result, and inspection of additional timelines

Normalized Electron Trigger Yield

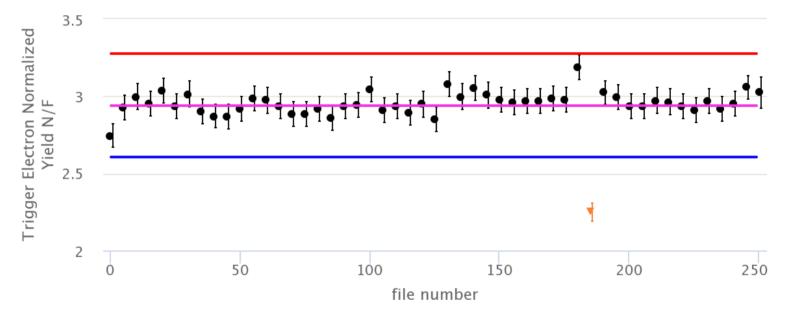
- Number of electron triggers (N) normalized by Faraday Cup charge (F)
- Outliers are automatically identified by IQR method; IQR is calculated in regions of relatively constant N/F called "epochs" (see backup)
- The livetime is also monitored as part of the automatic QA

Defect Bits

- Various criteria are checked, and *defect bits* are assigned to a file if any anomalies are found
- Different analyses have different levels of quality criteria, so the idea is to identify defects, and let the analyzer decide which runs are sufficient for their analysis

- 1 TerminalOutlier: outlier N/F of first or last file of run, not marginal
- 2 MarginalOutlier: marginal outlier N/F, within one stddev of cut line
- **3** SectorLoss: N/F diminished within a sector for several consecutive files
- 4 LiveTimeGT1: live time > 1
- 5 Misc: miscellaneous defect, documented as comment

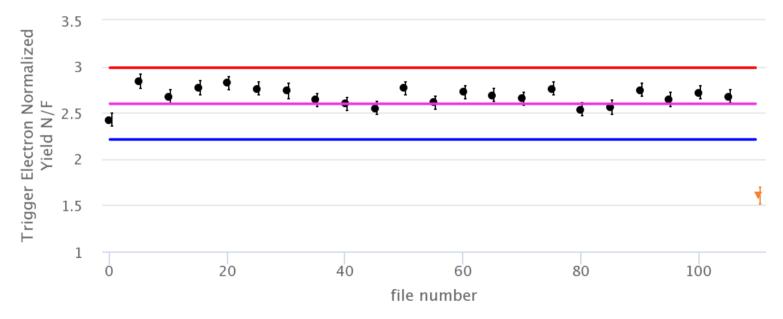
For bits 0-3, only 1 can be assigned to a file


The next few slides show examples of each of these

- $\rightarrow\,$ plots of N/F vs. file number, for a particular run and sector
- \rightarrow files with the defect are drawn as red points

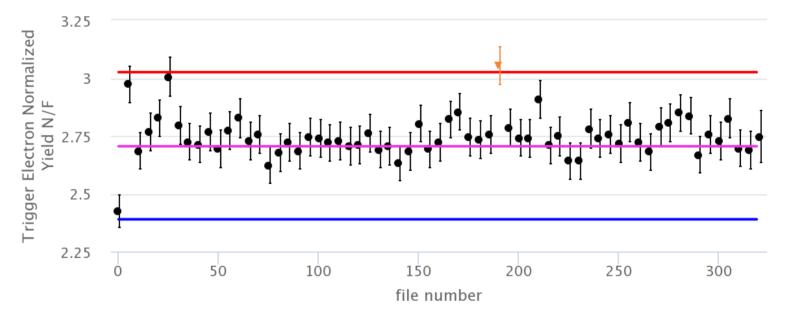
 $\rightarrow\,$ cut lines, as well as the epoch's median, are drawn as well

Bit 0: TotalOutlier


RUN 5211: Trigger Electron Normalized Yield N/F vs. file number --Sector 2

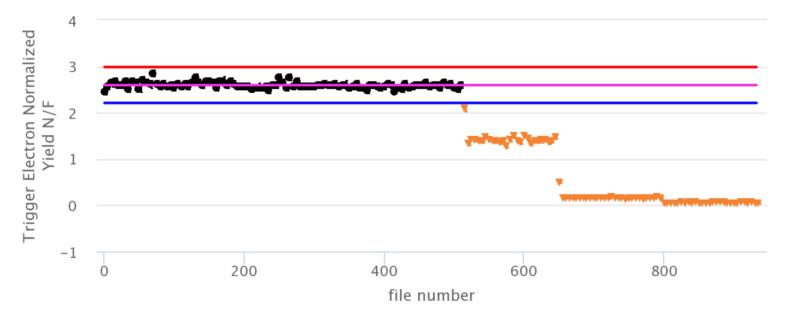
Identified by Automatic QA

Bit 1: TerminalOutlier

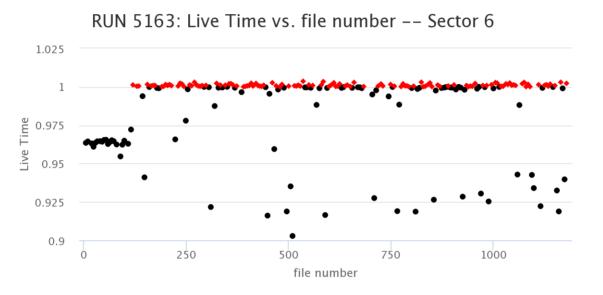

RUN 5158: Trigger Electron Normalized Yield N/F vs. file number --Sector 1

Identified by Automatic QA

Bit 2: MarginalOutlier


RUN 5039: Trigger Electron Normalized Yield N/F vs. file number --Sector 1

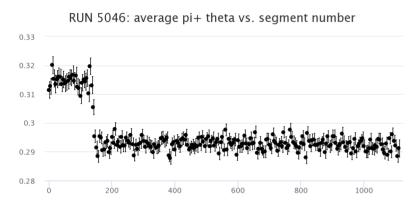
Identified by Automatic QA


Bit 3: SectorLoss

RUN 5160: Trigger Electron Normalized Yield N/F vs. file number --Sector 1

Identified as Outliers in Automatic QA Manual QA is used to change the bit to SectorLoss

Bit 4: LiveTimeGT1

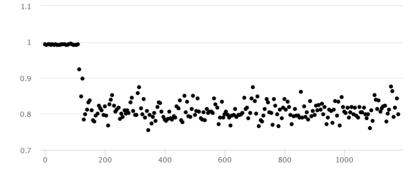

Identified by Automatic QA

Note: this livetime calculation might not be correct!

- based on ratio of gated to ungated FC charge
- ungated FC charge has some issues in inbending2
- low-lumi runs' livetime is inconsistent
- Need to crosscheck with other livetime tables

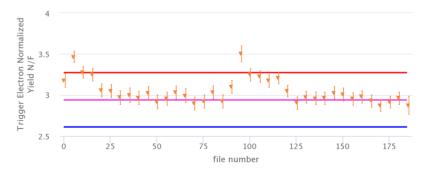
Bit 5: Misc

Jump in pion θ



- Plots show some examples
- A comment is stored in the QA database* if this bit is used

* currently just a JSON file


Low fraction of events with defined helicity

Unstable beam

RUN 5229: Trigger Electron Normalized Yield N/F vs. file number --Sector 1

C. Dilks

Identified in Manual QA

Overall Quality

Inbending1: runs 5032 – 5262

- Files with no defects: 76%
- Files with defect = Misc: 23%
- Files with livetime>1: 6%

Inbending2: runs 5300 – 5419

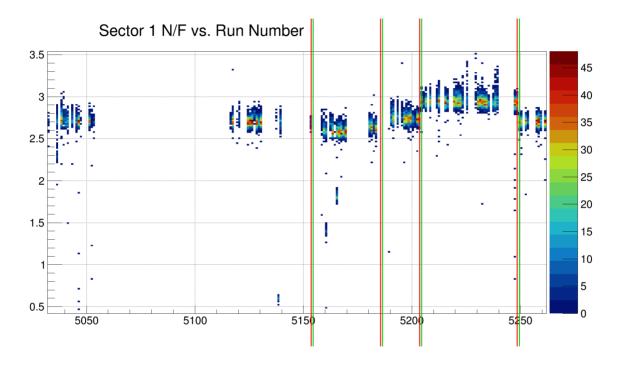
- Files with no defects: 87%
- Files with defect = Misc: **12%**
- Files with livetime>1: 0.4%

Caveats:

- Files with defect=Misc are not necessarily "bad", but this flag should serve as a warning to the analyzer
- The livetime calculation may not be accurate

The QA "Database"

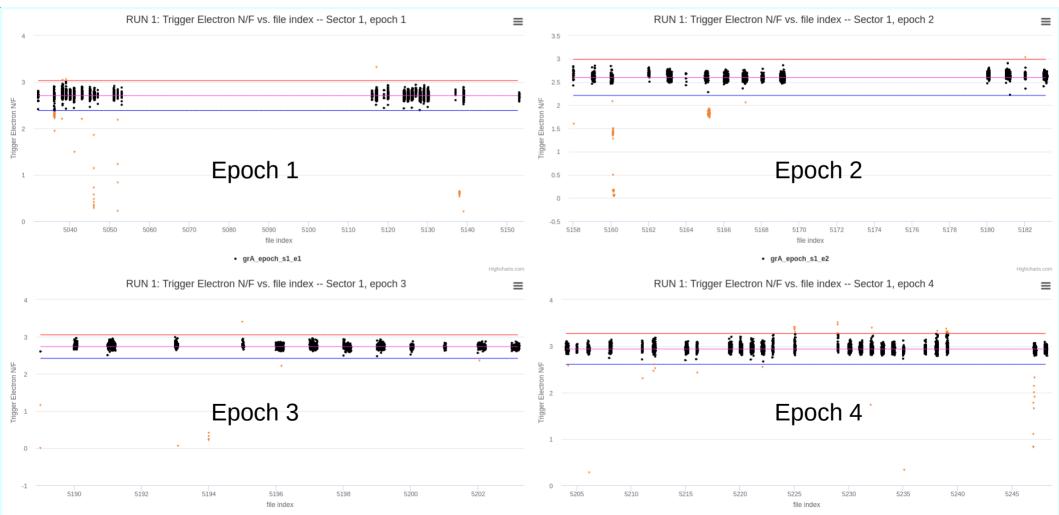
- QA results are currently stored in a JSON file
 - Accessors and modifiers are implemented, but could certainly be improved
 - Access file number via mapping event number to file number
- Software meeting discussion: include defect bit in the trains
 - Does not allow for access to QA comment
 - Not easy to update
- Still under discussion, but JSON file is a start

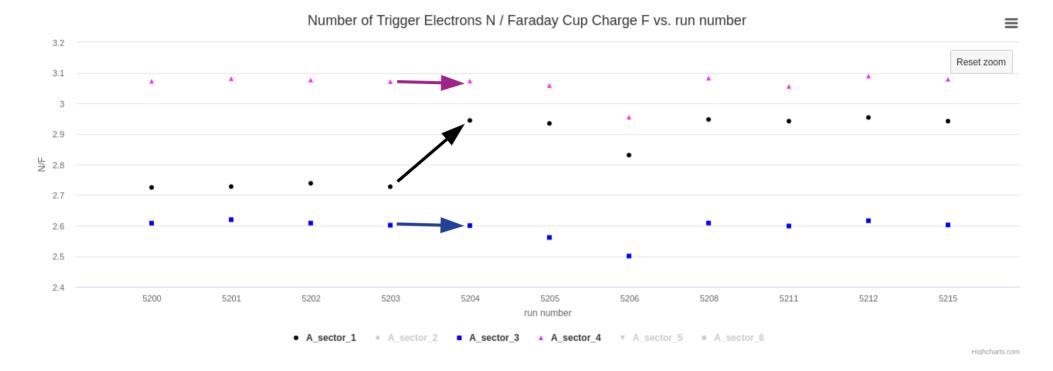

▶ 5323:	{}
▶ 5324:	{}
▼ 5325:	
▼ 0:	
<pre>> comment:</pre>	"torus at 60%, high triggto 30 nA during the run"
defect:	33
<pre>> sectorDefects:</pre>	{}
▼ 5:	
<pre>> comment:</pre>	"torus at 60%, high triggto 30 nA during the run"
defect:	33
<pre>> sectorDefects:</pre>	{}
▼ 10:	
<pre>> comment:</pre>	"torus at 60%, high triggto 30 nA during the run"
defect:	33
<pre>> sectorDefects:</pre>	{}
▶ 15:	{}
▶ 20:	{}
▶ 25:	{}
► 3A+	I(X)

Plans

- Add event number ranges to QA JSON file
- Decide how the QA information can be accessed by all analyzers
- Silvia is applying this software to RGB, and helping spot bugs in the code and in the documentation
- The software is ready to run on outbending data

BACKUP


Epoch boundaries


- Plot of Charge-normalized electron trigger yield "N/F" vs. Run Number
- QA cut lines are set with 4*IQR method, determined separately within each epoch
- Vertical lines represent epoch boundaries C. Dilks

Epoch boundaries

- N/F vs. Run Number, for Sector 1, Epochs 1-4
- These plots are used to tune epoch boundaries and width of cut lines

Epoch boundaries

- Sector 1 has a step between runs 5204 and 5205, relative to all other sectors
- An epoch boundary for the QA is drawn here, even though it is only needed for sector 1 $_{\rm C.\ Dilks}$