SIDIS @ RGB Fragmentation analysis overview

JLAB SIDIS working group June-13, 2023

Jefferson Lab

Fragmentation analysis

• We study fragmentation ratio off the deuteron

$$r(z) = \frac{4 - \left(\sigma_d^{\pi^+} / \sigma_d^{\pi^-}\right)}{4 \left(\sigma_d^{\pi^+} / \sigma_d^{\pi^-}\right) - 1}$$

• Goal: SRC-tagged ratio

• 1st step: untagged ratio

Fragmentation analysis

• We study fragmentation ratio off the deuteron

$$r(z) = \frac{4 - \left(\sigma_d^{\pi^+} / \sigma_d^{\pi^-}\right)}{4 \left(\sigma_d^{\pi^+} / \sigma_d^{\pi^-}\right) - 1}$$

Goal: SRC-tagged high-virtuality p in np-SRC
1st step: untagged n or p in d

Fragmentation analysis status

• Low Q^2 - data consistent with published ones

Fragmentation analysis status

- Low Q^2 data consistent with published ones
- High Q^2 data approach FF prediction

Fragmentation analysis status

- Low Q^2 data consistent with published ones
- High Q^2 data approach FF prediction
- We believe our analysis is ready for review

1. Spring-2019 run at 10.2 GeV beam,

/cache/clas12/rg-b/production/recon/spring2019/torus-1/pass1/v0/dst/train/sidisdvcs/

2. Spring-2020 run at 10.4 GeV beam,

/cache/clas12/rg-b/production/recon/spring2020/torus-1/pass1/v1/dst/train/sidisdvcs/

3. Spring-2019 run at 10.6 GeV beam,

/cache/clas12/rg-b/production/recon/spring2019/torus-1/pass1/v0/dst/train/sidisdvcs/

SIDIS@RGB | Statistics

E_{beam} [GeV]	$d(e, e'\pi^+)$	$d(e, e'\pi^-)$
10.2	12.5 M	7.7 M
10.4	11.0 M	6.8 M
10.6	9.8 M	6.1 M
total	33.3 M	20.6 M

SIDIS@RGB | Event selection cuts

Requirement	Cut			
$d(e,e'\pi)$ in the forward detector				
PCAL fiducial cuts	$V_{PCAL} > 19$ cm, $W_{PCAL} > 19$ cm			
PCAL minimum energy deposi-	$PCAL_{dep} > 70 \text{ MeV}$			
tion cut				
Calorimetry sampling fraction	$\frac{PCAL + ECIN + ECOUT}{p_e} > 0.17$			
	$\frac{E_{ECIN}}{p} > 0.2 - \frac{E_{PCAL}}{p}$			
Vertex z position	$-13.0 \text{ cm} < v_z < +12.0 \text{ cm}$		DC fiducial cuts	See Section 3.3
Difference between vertex z -	$ v_z(e) - v_z(\pi) < 20.0 \text{ cm}$		Enhance DIS contribution	$W>2.5~{ m GeV/c^2}$
position of the electron and the			Enhance DIS contribution	$Q>2~({ m GeV/c})^2$
pion			Suppress QE contribution	y < 0.75
Cut on χ^2_{reg} from the Event	See Section 3.2.2	+	Reduce the contamination from	$M_x > 1.7~{ m GeV/c^2}$
Builder for the pions			exclusive processes	
builder for the pions			Suppress Kaon contamination in	$1.25 < p_\pi < 5 ~{ m GeV/c}$
			the pion sample	
			Focus on high acceptance the	$5^{\circ} < \theta_e < 35^{\circ}, 5^{\circ} < \theta_{\pi} < 35^{\circ}$
			HTCC	
			Leading outgoing pions	$z_{\pi} > 0.3$
			π^+ and π^- acceptance matching	See Section 3.5

SIDIS@RGB | Event selection cuts

e and π Particle ID *e* and π fiducial cuts (PCAL, DC) Calorimetry energy deposition $5^{\circ} < \theta_{e} < 35^{\circ}, 5^{\circ} < \theta_{\pi} < 35^{\circ}$ $|v_{z}^{e} - v_{z}^{\pi}| < 20 \text{ cm}$ $1.25 < p_{\pi} < 5.0 \text{ GeV/c} (\pi/\text{K separation})$ 0.3 < z < 1.0

 π^+/π^- acceptance matching

1.7 GeV $< M_x(e, e'\pi)$

<u>DIS</u>

2 (GeV/c)² < Q^2 < 10 (GeV/c)² 2.5 (GeV/c)² < W $y = \frac{\omega}{E_{beam}}$ < 0.75 (avoid QE)

SIDIS@RGB | Event selection cuts

e and π Particle ID	DIS
e and π fiducial cuts (PCAL DC)	$2 (\text{GeV/c})^2 < Q^2 < 10 (\text{GeV/c})^2$
Colorimetry energy deposition	$2.5 (GeV/c)^2 < W$
$5^{\circ} < 0 < 25^{\circ} = 5^{\circ} < 0 < 25^{\circ}$	$y = \frac{\omega}{E} < 0.75$ (avoid QE)
$J < \sigma_e < 5J$, $J < \sigma_\pi < 5J$	<i>E</i> _{beam}
$ v_z^e - v_z^n < 20 \text{ cm}$	Approved PID developed
$1.25 < p_{\pi} < 5.0 \text{ GeV/c} (\pi/\text{K separation})$	by RGA SIDIS group
0.3 < z < 1.0	
π^+/π^- acceptance matching	"Cleaning" the event-
1.7 GeV < $M_x(e, e'\pi)$	sample

SIDIS@RGB | *e*-PID cuts - PCAL fiducial cuts

SIDIS@RGB | *e*-PID cuts - ECIN + ECOUT

$$PCAL_{dep} > 70 \text{ MeV}$$

SIDIS@RGB | e-PID cuts - Sampling fraction

SIDIS@RGB | *e*-PID cuts - Sampling fraction vs. PCAL

$$\frac{E_{ECIN}}{p} > 0.2 - \frac{E_{PCAL}}{p}$$

SIDIS@RGB | *e*-PID cuts - *e* vertex

SIDIS@RGB $|\pi$ -PID cuts - π and *e* vertex difference

SIDIS@RGB | π -PID cuts - χ^2_{PID} for π

 $\begin{aligned} -3C < \chi_{\pi}^{2} < 3C & p < 2.44 \text{ GeV} \\ -3C < \chi_{\pi}^{2} < C(0.0869 - 14.98587e^{-p/1.18236} + 1.811751e^{-p/4.86394}) & 2.44 < p < 4.6 \text{ GeV} \\ -3C < \chi_{\pi}^{2} < C(-1.14099 + 24.14992e^{-p/1.36554} + 2.66876e^{-p/6.80552}) & 4.6 \text{ GeV} < p \end{aligned}$

SIDIS@RGB | DC fiducial cuts for *e*

SIDIS@RGB | DC fiducial cuts for π

SIDIS@RGB | Kinematical cuts - $W \& Q^2$

SIDIS@RGB | Kinematical cuts - y

SIDIS@RGB | Kinematical cuts - Missing mass

SIDIS@RGB | Kinematical cuts - Pion momentum

SIDIS@RGB | Kinematical cuts - θ_e

SIDIS@RGB | Kinematical cuts - θ_{π}

SIDIS@RGB | Kinematical cuts - high z_{π}

SIDIS@RGB $|\pi^+$ and π^- acceptance matching

SIDIS@RGB $|\pi^+$ and π^- acceptance matching

 π^+

 π

SIDIS@RGB | Electron kinematics - x_B vs. Q^2

SIDIS@RGB | Electron kinematics - W vs. Q^2

SIDIS@RGB | Kinematics - z_{π} vs. Q^2

SIDIS@RGB | Kinematics - pion momentum

No acceptance corrections

SIDIS@RGB | Kinematics - pion p_T

No acceptance corrections

SIDIS@RGB | Kinematics - pseudo rapidity

No acceptance corrections

SIDIS@RGB | M_x in bins of Q^2 - $d(e, e'\pi^+)$

SIDIS@RGB | M_x in bins of $Q^2 - d(e, e'\pi^-)$

SIDIS@RGB | Acceptance corrections corrections

SIDIS@RGB | Reliable MC for correction calculations

SIDIS@RGB | Reliable MC for correction calculations

SIDIS@RGB | Impact of MC weights

41

SIDIS@RGB $| \rho$ contamination quantification

SIDIS@RGB $| \rho$ contamination subtraction

Example correction for r(z) for $x_B = 0.3-0.35$, $Q^2 = 2-2.5$

 $2.00 < Q^2 < 2.50 (\text{GeV/c})^2$

SIDIS@RGB | Validation plot

Summary

- Low Q^2 data consistent with published ones
- High Q^2 data approach FF prediction
- Analysis is ready for review we welcome

comments and corrections

Thank you for your time

cohen.erez7@gmail.com

Backups