Looking into Radiative Effects Using RADGEN with Pythia

Richard Capobianco

Graduate Student of University of Connecticut – Argonne National Lab

SIDIS Group Meeting 3-25-2025

Motivation

- Semi-Inclusive Deep Inelastic Scattering (SIDIS) experiments allow us to address questions about the 3D structure of nucleons
- Azimuthal modulations in unpolarized SIDIS cross-section for charged pion electroproduction can give access to the Cahn and Boer-Mulders effects
 - **Boer-Mulders Effect:** Sensitive to the correlation between the quark's transverse momentum and intrinsic transverse spin in an unpolarized nucleon
 - Cahn Effect: Sensitive to the transverse motion of quarks inside the nucleon
- A non-zero Boer-Mulders requires quark orbital angular momentum contributions to the proton spin (aspect of the proton missing spin puzzle)

SIDIS Cross-Section and Boer-Mulders

The lepton-hadron Unpolarized SIDIS Cross-Section:

The Boer-Mulders and Cahn effects are present in the Structure Functions:

UCONN UNIVERSITY OF Argonne

Reaction Studied: $ep \rightarrow e\pi^+(X)$

Analysis Procedure

Experimental extraction of cross-section

RADGEN Explanation – Introduction

- RADGEN is a MC generator for polarized and unpolarized DIS radiative events
 - Can generate Radiative Corrections for inclusive, semi-inclusive and exclusive DIS processes
- The radiative corrections come from the sum of these contributions simulated in RADGEN:

• Events generated based on their contributions to the observed total cross-section:

$$\sigma_{obs} = \sigma_{non-rad}(\Delta) + \sigma_{in}(\Delta) + \sigma_q + \sigma_{el}$$

• Where $\sigma_{non-rad}(\Delta)$ includes the Born process (can be simulated by MC without RADGEN – i.e. GEN_{Born})

GEN_{Born} Data

ENERGY Office of **Jefferson Lab**

Data

- GEN_{Rad} and Data are the simulated and experimentally measured values of σ_{obs}
- Therefore, the Radiative Corrected (Born Level) Cross-section (σ_{cor}) can be given by:

$$RC = \frac{GEN_{Rad}}{GEN_{Born}}$$
 Radiative Correction Factor

IN CONNECTICUT Argonne

RADGEN Implementation in Pythia

- 1. RADGEN begins by taking what Pythia started to generate for the scattered lepton
- 2. Then chooses scattering channel (non-radiative, elastic, quasielastic, or inelastic)
 - Choice based on total observed cross section
- 3. If a radiative channel is selected, the photon kinematics are then determined from a previously generated lookup table
- 4. The other kinematic variables (Q^2 and ν) are recomputed to obtain their true values:

$$W_{true}^2 = W^2 - 2E_{\gamma}(\nu + M - \sqrt{\nu^2 + Q^2}\cos\theta_{\gamma}), \quad \nu_{true} = \nu - E_{\gamma},$$

$$Q_{true}^{2} = Q^{2} + 2E_{\gamma}(\nu - \sqrt{\nu^{2} + Q^{2}}\cos\theta_{\gamma}), \qquad x_{true} = \frac{Q_{true}^{2}}{2M\nu_{true}}$$

• These *true* variables are equivalent to what would be calculated by using $q = e - e' - \chi$ where *e*, *e'*, and χ are the 4-vectors of the incoming beam, scattered electron, and radiated photon

ENERGY Office of Science Jefferson Lab C

- Used to generate the rest of the Pythia event after returning these variables and the radiated photon kinematics
- 5. New event weight given by ratio of the radiatively corrected and Born cross sections
 - Recalculation of weights uses the Mo-Tsai approach for the unpolarized Monte Carlo

(Initial) Issues with Pythia to be Addressed

The following issues were discovered in the implementation of RADGEN into Pythia when I started working with it in this analysis:

- 1. Did not flag whether the photon radiated from the incoming (ISR) or outgoing (FSR) electrons
- 2. Was not reporting the correct beam/scattered electron kinematics for events that radiated a photon (i.e., did not include the ISR/FSR effects on the electrons' kinematics)
- 3. The photon's kinematics were not reported in the same lab-frame as the other particles
- 4. Did not set the minimum photon energy parameter properly
- 5. The FSR photon's azimuthal distribution around the scattered electron is not defined uniformly

Point 5 is the only issue above that is still currently unresolved

Addressing Issues 1 and 2

Issue 1: Did not flag whether the photon radiated from the incoming (ISR) or outgoing (FSR) electrons

- Pythia only was giving me the information in the green circles Missing info to be found in red squares
 - Pythia used the 10.6 GeV beam energy as the beam <u>at the vertex</u> with/without RADGEN (i.e., Issue 2)

• To distinguish ISR from FSR:

Compare the angles between the radiated photon and the scattered electron ($\theta_{e-\gamma}$) and the beam ($\theta_{beam-\gamma}$)

- If the **radiated photon** is more in-line with the <u>scattered electron</u> than the <u>beam</u>, (i.e., $\theta_{e-\gamma} < \theta_{beam-\gamma}$) then the event is <u>FSR</u>
- If the **radiated photon** is more in-line with the <u>beam</u> than the <u>scattered electron</u>, (i.e., $\theta_{beam-y} < \theta_{e-y}$) then the event is <u>ISR</u>

Once Flagged: Can resolve Issue 2 by applying momentum/Energy conservation to the 4-vectors of the electron that radiated the photon UCONN | UNIVERSITY OF Argonne

Addressing Issue 3

Issue 3: The photon's kinematics were not reported in the same lab-frame as the other particles

- RADGEN assumed that the photon kinematics being returned were in the lab-frame, however, they were actually closer to being in the Center-of-Mass Frame (used by Pythia when generating the event)
- Caused the FSR photon's φ-angle to be <u>anti-correlated</u> with the scattered electron in the reported frame

Addressing Issue 3

Issue 3: The photon's kinematics were not reported in the same lab-frame as the other particles

- RADGEN assumed that the photon kinematics being returned were in the lab-frame, however, they were actually closer to being in the Center-of-Mass Frame (used by Pythia when generating the event)
- Caused the FSR photon's φ-angle to be <u>anti-correlated</u> with the scattered electron in the reported frame

Addressing Issue 4

Issue 4: Did not set the minimum photon energy parameter (demin) properly

- The RADGEN parameter demin controls the minimum radiated photon energy generated (E_{ymin})
 - Was set to 100 MeV for HERMES, but I later modified it to 5 MeV (to include photons near our MM_N peak)
- Another issue was found while looking into <u>Issue 5</u> (FSR ϕ_{γ} around the scattered electron):
 - For some reason, the distribution suddenly changed at around demin = 18-19 MeV (behavior to be shown in the following slides)
 - Origin may come from the θ_{γ} angle since it can be affected by a parameter called Δ which is set by this implementation of RADGEN using $E_{\gamma min}$
 - **i.e., Changing demin effects** <u>both</u> Δ and E_{ymin} (the RADGEN paper states that this is customary)
 - Things impacted by changing Δ :
 - The integration limit (θ_{max}) of the cross section's integration over θ_{γ} is defined as $\theta_{max} = \min(\pi, \theta_{\Delta})$ where θ_{Δ} can be found from $W_{true}^2 = W^2 - 2\Delta(\nu + M - \sqrt{\nu^2 + Q^2} \cos \theta_{\Delta})$
 - The radiative correction factor $\delta_R(\Delta) = \exp\left[-\frac{\alpha}{\pi}\left(\ln\frac{E}{\Delta} + \ln\frac{E'}{\Delta}\right)\left(\ln\frac{Q^2}{m^2} 1\right)\right]$

Radiated Photon Energies

After Modifications to RADGEN

Changes from demin = 100 MeV to demin = 5 MeV

> Includes **Radiated and Non-Radiated Events**

φ_v of FSR Photons Around the Scattered Electron

Larger demin value (19 MeV)

U.S. DEPARTMENT OF

13

The behavior of this angle changes suddenly between demin=19 MeV an demin=18 MeV (Checked other values to confirm that this transition is not gradual) Both behaviors are still wrong (See Issue 5)

Office of Science Jefferson Lab C

$E_v vs \phi_v$ of FSR Photons Around the Scattered Electron

Addressing Issue 4: Fixing demin

- The RADGEN Paper states that Δ should be "sufficiently large to avoid numerical instabilities because for $\Delta = 0$ the contribution $\sigma_{in}(\Delta)$ gets infinite" while also being "sufficiently small to reduce the soft photon region which is calculated only approximately"
 - Claims that the best choice for Δ is generally about 0.1% of the beam energy (Cites: <u>arXiv:hep-ph/9403238</u>)
 - That paper states the following:

Corrections depicted by the diagrams in fig. 1 can be divided into two groups: emission of real photons (fig. 1b) with energy larger than Δ and those with energy smaller than Δ (fig. 1b) together with virtual corrections (fig. 1c,d). Contributions from the soft photon emission and from the vertex correction *separately* are infrared divergent but the divergences cancel when the contributions are considered jointly [10]. The parameter Δ may have a meaning of the energy resolution or in another words a maximal energy of the emitted photon which is still not detectable in the experiment. It is often called the 'infrared cut-off' parameter. This interpretation implies that Δ may not be too large. Too small Δ must also be avoided since it may cause numerical instabilities in the computation of the soft photon contribution. The numerical results of the calculations should not depend on Δ .

• Plotted the radiative correction factor $\delta_R(\Delta) = \exp\left[-\frac{\alpha}{\pi}\left(\ln\frac{E}{\Delta} + \ln\frac{E'}{\Delta}\right)\left(\ln\frac{Q^2}{m^2} - 1\right)\right]$ vs Δ to determine its ideal value*

*The red text means that the paper that RADGEN cited defined this factor as the factor in the exponent while RADGEN defines it as the whole exponential term

Office of Jefferson Lab

Addressing Issue 4: Fixing demin

Plot of RC Factor as Function of Δ (i.e., demin)

- demin = 5 MeV is too low by these standards
- The cutoff point that seems to be reasonable is around 20 MeV (i.e., where the sudden change in the φ_{γ} around the scattered electron begins)
 - Conclusion:

Set demin > 18 MeV and try to address **Issue 5** based on those plots

 \leftarrow Showing the Q² and y dependences

Issue 5: FSR ϕ_{y} Relative to Beam and Scattered Electron

$\Delta \theta_{e-v}$ vs ϕ_v of FSR Photons Around the Scattered Electron

(Attempted) Replication of the Plots from RADGEN

Plots from the RADGEN Paper

https://arxiv.org/pdf/hep-ph/9906408

- Shows the kinematics of the \bullet radiated photon (χ)
 - In Center-of-Mass (Tsai) frame
- Was based on a different • experimental configuration and cuts
 - My results on the next page will come from the • DIS events but other kinematics may not be identical

Office of Jefferson Lab

• Used only DIS events ($ep \rightarrow e'(X)$) in these slides

*Angles in these plots shown in radians

Office of

Figure 3: The distribution of the radiation angles θ_{γ} a) and ϕ_{γ} b) and of the energy c) of the radiated photon for x = 0.1 and y = 0.8. The two-dimensional distribution d) shows θ_{γ} vs ϕ_{γ} .

(Attempted) Replication of the Plots from RADGEN

Generated with:

- Beam Energy = 10.6 GeV
- $0.085 < x_{\rm B} < 0.115 (x_{\rm B} = 0.1)$
- 0.585 < y < 0.615 (y = 0.6)
- $0.98 < Q^2 < 1.42$
- Used fixed Hydrogen Target
 - RADGEN paper might have used ³He

demin = 0.019 (19 MeV)

Current Status of Monte Carlo

- ISR Effects have been added to the event generator
 - The beam energy can now vary event-by-event based on the photon given by RADGEN
 - Energy and Momentum are being preserved (i.e., implementation is working correctly)
- FSR Effects have been added to the final kinematic calculations
 - These effects do not impact the rest of the event generation process, so they can be accounted for at any time before the events get processed by the detector simulation
- Modified RADGEN's photon energy threshold (demin) based on more detailed investigation
 - Will use a value of demin > 20 MeV
- Things that still need to be fixed:
 - The radiated photon's angles as measured around the scattered electron (problem with the FSR events)
 - Could it be related to some type of suppression of FSR events or some type of bug in the code?

Questions?

Acknowledgments and Thanks

- Contributions made by other members of the CLAS Collaboration and researchers at Argonne National Lab
- This work is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract number DE-AC02-06CH11357

Backup Slides

Configuration of Pythia with RADGEN

- Mainly used the configurations given by the 'claspyth' steering file: <u>input.10.6gev.with-comments</u>
 - Changes to the configurations detailed below

Ranges/Values used for generating Q², y, x_B, W², and the beam/target proton energies:

- Q²: 0.85 to 20.0 GeV² (changed from the claspyth default of 0.00001 to 15.0 GeV²)
- y: 0.15 to 0.95
- x_B: 0.05 to 0.95 (from clasdis)
- W²: 4 GeV² (min)
- Beam Energy: 10.6 GeV
- Proton Target Energy: 0 GeV (at rest)

Additional changes added to better match clasdis:

- Changed the F2-Model/R-Parametrization from "ALLM,1990" to "F2PY,1998"
- PARJ(33) = <u>0.8</u> changed to <u>0.3</u>
- PARJ(41) = <u>0.3</u> changed to <u>1.2</u>

***PARJ(33)** defines the energy threshold stopping parton fragmentation and forming two hadrons. ***PARJ(41)** gives the 'a' parameter of the symmetric Lund fragmentation function

Office of Science Jefferson Lab

(Attempted) Replication of the Plots from RADGEN

Generated with:

- Beam Energy = 10.6 GeV
- $0.085 < x_{\rm B} < 0.115 (x_{\rm B} = 0.1)$
- 0.585 < y < 0.615 (y = 0.6)
- $0.98 < Q^2 < 1.42$
- Used fixed Hydrogen Target
 - RADGEN paper might • have used ³He
- demin = 0.018 (18 MeV)
- p-peak is heavily suppressed above this demin value
 - Fewer total events in this peak and the range is smaller (demin = 0.019 cuts off atabout $\theta_{y-Tsai} = 0.28 \text{ rad}$)

φ_v of FSR Photons Around the Scattered Electron

Larger (Original) demin value (100 MeV)

φ_v of FSR Photons Around the Scattered Electron

$\Delta \theta_{e-v}$ vs ϕ_v of FSR Photons Around the Scattered Electron

ϕ_{FI} vs ϕ_{v} in Lab Frame for All Radiated Events (New-After Fixing Photon Rotation)

UCONN UNIVERSITY OF Argonne

Both angles are measured from around the incoming beam

Includes All Radiated Events

Office of Science Jefferson Lab CO

Office of

ϕ_{v} Relative to Beam and Scattered Electron

Includes All Radiated Events

Missing Mass without Radiative Corrections

Missing Mass as Reported with Uncorrected Radiated Kinematics

Includes **Radiated and Non-Radiated Events**

Blue line is without RADGEN

Bin Size = 50 MeV/bin

Missing Mass with Radiative Corrections

Generated Distributions of (Radiatively Corrected) Missing Mass Min Photon Energy (demin = 0.1) Pythia (without radgen) 3000 Pythia (with radgen 2500 2000 1500 1000 500 0 Õ.5 1.5 2.5 3.5 2 З 4.5 (Radiatively Corrected) Missing Mass

UCONN UNIVERSITY OF Argonne

Before Modifications to RADGEN

Generated Distributions of (Radiatively Corrected) Missing Mass Updated Min Photon Energy (demin = 0.005) Pythia (without radgen) 3000 Pythia (with radgen) 2500 2000 1500 1000 500 0 1.5 Õ.5 2.5 3.5 4.5 2 З (Radiatively Corrected) Missing Mass Office of S. DEPARTMENT OF Office of Jefferson Lab 32

After Modifications to RADGEN

Missing Mass as Reported with Corrected Radiated Kinematics

Includes **Radiated and Non-Radiated Events**

Blue line is without RADGEN

Bin Size = 50 MeV/bin

Missing Mass with/without Vertex Calculations

Generated Distributions of Missing Mass with/without Correct Vertex Kinematics

33

.S. DEPARTMENT OF

Includes Radiated Events Only

Office of Science Jefferson Lab CO

Energy/Momentum Conservation Details

What I did to verify that Pythia was only reporting the particles' Vertex Kinematics

Checking Energy and Momentum Conservation

Done with calculations of the total initial and final state particles' momenta and energies

• p_x, p_y, p_z, and E are all handled separately (full conservation of each component of the particles' 4-vectors)

Checking Energy and Momentum Conservation

Done with calculations of the total initial and final state particles' momenta and energies

• p_x , p_y , p_z , and E are all handled separately (full conservation of each component of the particles' 4-vectors)

		Checking	g Event 498:						
1	21	11	9	3	4	0.000000	0.00000	-10.600000	10.600000
2	21	2212	9	5	0	-0.000000	0.00000	-0.00000	0.938270
Tota	l Initial:					0.000000	0.00000	-10.600000	11.538270
11	1	11	3	0	0	-0.649710	0.453333	-7.277024	7.320022
17	1	2212	14	0	0	0.273942	-0.065846	-1.348208	1.666552
18	1	211	15	0	0	0.397148	-0.339520	-0.738504	0.915351
20	1	-211	16	0	0	-0.305307	-0.002163	-0.365014	0.495916
22	1	22	19	0	0	-0.009405	0.051313	-0.100498	0.113232
23	1	22	19	0	0	-0.139667	-0.042117	-0.438938	0.462545
24	1	22	21	θ	0	0.054423	-0.056035	-0.050844	0.093203
25	1	22	21	0	0	0.378577	0.001034	-0.280970	0.471451
26	55	22	1	0	9	0.002683	0.001624	-1.502146	1.502149
Tota	l Final:					0.00001	-0.000001	-10.600000	11.538272

Passed Energy/Momentum Conservation Check

================= Checking Event 499:

1	21	11	0	3	4	0.00000	0.00000	-10.600000	10.600000
2	21	2212	0	5	0	-0.000000	0.00000	-0.000000	0.938270
Total	Initial	:				0.000000	0.000000	-10.600000	11.538270
11	1	11	3	0	0	-0.580796	-0.115849	-2.320392	2.394778
19	1	-211	15	0	9	0.090067	-0.004205	-0.793537	0.810747
20	1	211	15	0	0	0.039992	-0.142813	-2.402285	2.410902
22	1	211	16	0	0	0.174444	-0.033037	-0.174092	0.285150
24	1	-211	17	0	9	-0.403250	-0.098386	-0.806265	0.917514
26	1	2212	18	0	9	0.188380	-0.116667	-1.162335	1.510123
28	1	22	21	0	0	0.088262	0.127079	-0.994173	1.006140
29	1	22	21	0	0	0.106482	0.226420	-0.822693	0.859900
30	1	22	23	0	0	0.040109	-0.008651	-0.028725	0.050087
31	1	22	23	0	0	-0.060567	-0.088668	-0.305704	0.324015
32	1	22	25	0	9	0.267620	0.135342	-0.520024	0.600302
33	1	22	25	0	0	0.030261	-0.031033	-0.078500	0.089672
34	1	22	27	0	0	0.012309	0.074360	-0.187911	0.202464
	1	22	27	0	9	0.006686	0.076109	-0.003364	0.076476
Total	Final:					-0.000001	0.00001	-10.600000	11.538270

Passed Energy/Momentum Conservation Check

Checking Event 588

		onconzi	g LIGHT OU						
1	21	11	0	3	4	0.00000	0.000000	-10.600000	10.600000
2	21	2212	0	5	0	-0.000000	0.00000	-0.00000	0.938270
Total	Initial:					0.000000	0.00000	-10.600000	11.538270
8	1	-211	6	0	9	0.201771	0.006471	-2.026003	2.040813
10	1	2212	7	0	0	-0.149186	0.413114	-0.349224	1.093265
11	1	11	3	0	0	0.449717	-0.557558	-3.798376	3.865330
12	1	211	9	0	0	-0.195680	0.323825	-0.837115	0.929190
14	1	22	13	0	0	-0.219134	-0.055405	-2.134567	2.146501
15	1	22	13	0	0	-0.087488	-0.130447	-1.454717	1.463172
Total	Final:					0.00000	-0.000000	-10.600002	11.538271

Passed Energy/Momentum Conservation Check

3 out of a total of 500 Events failed the Energy/Momentum Conservation Checks.

Only 3 out of 500 (test) events failed (>0.6%)

def check_energy_momentum_conservation(event_in, print_lines=False): # Check energy and momentum conservation for a given event from TXT files initial_px, initial_py, initial_pz, initial_energy = 0.0, 0.0, 0.0, 0.0 final px, final py, final pz, final energy = 0.0, 0.0, 0.0, 0.0for ii, entry in enumerate(event_in): if(ii > 0): # else is header Line_Index, status, PID, Parent, FirstDaughter, Last_Daughter, px, py, pz, Energy, Mass, Xvertex, Yvertex px, py, pz, Energy = map(float, [px, py, pz, Energy]) if(str(Line_Index) in ['1', '2']): # First two particles as initial values initial px += px initial_py += py initial pz += pz initial energy += Energy if(print_lines): print(f"{color.GREEN}{entry}{color.END}") elif(str(status) in ['1']): # Sum over final state particles final_px **+=** px final py += pv final pz += pz final_energy += Energy if(print_lines): print(f"{color.CYAN}{entry}{color.END}") elif(str(status) in ['55', '56', '57']): if(print_lines): print(f"{color.BLUE}{entry}{color.END}") else: print(f"{color.BLUE}RADGEN EVENT (status = {status}){color.END}") # elif(print_lines): # Print Header print(f"{color.BOLD}{entry}{color.END}") # total px = abs(initial_px – final px) total_py = abs(initial_py – final_py) 36 = abs(initial pz – final pz) total pz total energy = abs(initial energy - final energy) X_Conserve = total_px < 2.1e-6 Jefferson Lab Y_Conserve = total_py < 2.1e-6 Z_Conserve = total_pz < 2.1e-6</pre> $E_Conserve = total_energy < 2.1e-6$

Checking Energy and Momentum Conservation

Done with calculations of the total initial and final state particles' momenta and energies

• p_x, p_y, p_z, and E are all handled separately (full conservation of each component of the particles' 4-vectors)

		Checkin	g Event 111						
1	21	11	8	3	- 4	8.00000	8.888888	-18.600000	18.688888
2	21	2212	8	5		-0.00000	0.00000	-0.00000	0.938278
Total	Initial:					0.00000	0.00000	-10.600000	11.538270
17	1	11	3	9	8	0.527139	0.619579	-2.835272	2.949665
22 1	1	211	18	9	e	-8.111373	-8.853646	-8.282621	0.338580
2.5	1	-211	24	8	0	-8.131889	-8.379574	-1.789416	1.839220
26	1	321	24	e	Ð	8.235852	8.666548	-1.628670	1.842857
28	1	22	23	Ð	9	0.011931	-0.073097	-0.183096	0.197509
29	1	22	23	·0		8.126642	-8.133207	-1.224507	1.238225
32	1	2112	30	8	8	-B.529434	-0.353321	-1.679466	2.826952
34	1	22	31	0	0	8.819776	-0.011880	-8.023368	0.032837
35	1	22	31	8	e	-8.168288	-0.388363	-0.748129	0.824895
36	1	22	33	8	e	-8.837286	0.006123	-0.120112	8.142898
37	1	22	33	8	0	8.847971	-8.839151	-8.885342	0.105443
Total	Final:					0.000001	0.00001	-18.599999	11.538273
Engenner	de met e		and a						

Checking Event 148: -8.00000 8.88888 -8.8888 8.938278 0.000003 0.000003 0.000000 px initial = | Event 425: -18.68888 8.88888 8.88888 -8 88888 8 938279

Failed Events from test

- Only off by 0.000003 GeV in most cases (likely still just due to rounding errors)
- These errors are not related to radiated photons/RADGEN (can happen to any event checked in this way)
- <u>Conclusion</u>: Energy and Momentum <u>ARE</u> conserved from the reported kinematics <u>WITHOUT</u> the radiated photons
 - This means that the incoming/outgoing electrons naturally are the vertex kinematics used to generate the other final state particles (i.e., either the beam is supposed to be $k_{rad} = e - \gamma$ or the scattered electron is supposed to be $k' = e'_{rad} + \gamma$)³⁷

Office of Science Jefferson Lab C

Pythia+RADGEN Event Generation Details

How I modified the event generator to account of ISR/FSR effects

		384	CGenerate phase space point and check against cuts.
1) Duthia generates random values for	Ω^2 y and Φ	385	L00P=0
I Fyllia generales fandom values for	χ , y anu $\psi_{e'}$	386	121 L00P=L00P+1
	-	387	RadState=0
		388	call Reset_Beam_Vars()
		389	DO 131 I=1,2
		390	IF(MINT(140+I).NE.0) THEN
		391	CPick x and Q2
		392	MINT(199)=0
		393	CModified by liang to make it also running for low energy++
	New O^2 and v	394	<pre>geny=mcSet_YMin*(mcSet_YMax/mcSet_YMin)**PYR(0)</pre>
	iten q ana y	395	<pre>genQ2=mcSet_Q2Min*(mcSet_Q2Max/mcSet_Q2Min)**PYR(0)</pre>
		396	gennu=geny*ebeamEnucl
		397	geneprim = ebeamEnucl - gennu
		398	genx = genQ2/(2*massp*gennu)
		399	genW2 = massp**2genQ2+2*massp*gennu
		400	CModified by liang to make it also running for low energy
		401	genphi=0.
		402	CCheck to have sensible ranges for variables
		403	minq2 = PMS(1) * geny**2. / (1 geny)
		404	if (genQ2.lt.minq2) then
		405	! WRITE(*,*)"genQ2.lt.minq2"
		406	GOTO 121
		407	endif
		408	CCheck x and Q2 go toghether
		409	if (genQ2.gt.(2.*gennu*massp)) then
		410	! WRITE(*,*)"genQ2.gt.(2.*gennu*massp)"
		411	G010 121
		412	endit
		413	temp=(genQ2/(2.*ebeamEnucl*geneprim))-1.
		414	if ((temp.le.1.00).and.(temp.ge1.0)) then
		415	etneta = acos(temp)
	New φ _e	410	genthe = Shgl(etheta)
		417	genph1=PARU(2)*PTR(0)
		418	PHI(1)=genphi nnt-ton(othoto)
		419	ppt=tan(etneta)
		420	ppx=ppt*cos(Pff(T))
		421	ppy=ppt*Sin(Pni(i))
	39	422	COTO 121
UUUININ CONNECTICUT AI SUITILE		423	andif
		727	CHATI

1) Pythia generates random values for Q², y and $\phi_{e'}$

2) Call RADGEN (using 'call radgen_event')

Returns new Q², ν , radweight, and the 4-vector of the radiated photon (PhRAD)

41

321 * 1) Pythia generates random values for Q², y and $\phi_{e'}$ 322 * 323 *

2) Call RADGEN (using 'call radgen_event')

- Gets the photon's momentum, θ , and ϕ by using a previously generated lookup table and by integrating over probability densities
- Generates these values in the Tsai-Frame •
- Once generated, RADGEN then rotates the photon into the • 'lab frame' **BUT** it makes a convention error:
 - RADGEN assumes that the beam is in the +z direction in the ٠ lab frame but Pythia sets the beam in the -z direction
 - This rotation goes to the CM frame, not the lab frame ٠
 - This caused RADGEN to report the photon with a missing ٠ rotation \rightarrow I add it after the photon is returned by rotating these momentum components around the x-axis
 - (rotation around y-axis did not fix the issues caused by • this mistake)

radiative photon

324	<pre>* write(*,*)"dom=",dom,"dthg=",dthg,"dphig=",dphig</pre>
325	deg=dom ! Photon Energy
326	dthg=dtk ! Photon θ Angle
327	dphig=dphk <i>! Photon φ Angle</i>
328	<pre>sigma_total=sngl(tbor+tine+tpro+tnuc)</pre>
329	
330	q2tr=y+rrout*taout <i>! New Q^2</i>
331	anutr=sx/ap-dom ! New ν
332	<pre>C write(6,*) 'ita,deg,dthg,dphig,q2tr,anutr,xtr',</pre>
333	C & ita,deg,dthg,dphig,q2tr,anutr,
334	C & q2tr/(2.*amp*anutr)
335	
336	dgpz=deg*dcos(dthg)
337	dgpxy=deg*dsin(dthg)
338	dgpx=dgpxy*dcos(dphig)
339	dgpy=dgpxy*dsin(dphig)
340	<pre>C write(*,*)dphig,dthg,deg</pre>
341	*
342	<pre>*momentum components in the LAB-system:</pre>
343	*two rotations needed - first within the scattering plane
344	*around the y-axis and second around the new z-axis (beam
345	<pre>*direction) by Phi of the scattering plane</pre>
346	*
347	dgplx=-dgpz*dsts+dgpx*dcts
348	dgply=dgpy
349	dgplz=dgpz*dcts+dgpx*dsts
350	dcphi=dcos(dble(genphi))
351	dsphi=dsin(dble(genphi))
352	dplabg(1)=dgplx*dcphi-dgply*dsphi
353	dplabg(2)=dgplx*dsphi+dgply*dcphi
354	dplabg(3)=dqplz

- 1) Pythia generates random values for Q², y and $\varphi_{e'}$
- 2) Call RADGEN (using 'call radgen_event')
- 3) Return to Pythia (and rotate photon)
 - Reset_Beam_Vars() is always called before RADGEN to make sure the beam is set appropriately (avoids reapplying ISR
 effects from prior RADGEN calls)
 - BeamVary is a variable used to control whether my modifications are applied (BeamVary = 0 uses the original format)
 - RadState flags ISR vs FSR events
 - Rotating around the x-axis flips the signs of p_y and p_z

1-3)...

446

447

448

449

450

451

452

453

4) Determine ISR, FSR, or No Radiation

- Check_I_or_F_SR_New() checks ISR vs FSR conditions and updates the flag (angles calculated using the dot product of the momentum vectors – replaces prior method of just using the polar angles)
- Apply_ISR_Effects() sets the new beam energy/momentum using conservation laws with the photon kinematics given by RADGEN
 Θ_{e-y} vs Θ_{beam-y}

1-4)...

- 5) Calculate/update remaining kinematics and cuts (same as normal Pythia)
- 6) Update the Scattered electron's ϕ angle
 - Calculates a new angle by summing the x and y momentum components of the pre-RADGEN scattered electron and the radiated photon to calculate φ (prior versions did not account for the type of radiation or the frames of the particles)

- 1) Pythia generates random values for Q², y and $\phi_{e'}$
- 2) Call RADGEN (using 'call radgen_event')
- 3) Return to Pythia (and rotate photon)
- 4) Determine ISR, FSR, or No Radiation
- 5) Calculate/update remaining kinematics and cuts (same as normal Pythia)
- 6) Update the Scattered electron's ϕ angle
- 7) Save and continue
- 8) Report the FSR scattered electrons (with status code 1) as the scattered electron recorded in the event record minus the radiated photon's kinematics (as per $e'_{rad} = k' - \chi$)

RADGEN Explanation – How to Include into My Analysis

- 1. Apply ISR effects within Pythia to change the beam momentum/energy at the vertex
 - Effects the kinematics of the electron with status code 21 (1st particle in the event record)
 - Done before calculating the scattered electron (and all other particle kinematics) to ensure that momentum/energy is conserved (as per the earlier slides)
- 2. Apply FSR effects before using GEMC to simulate event reconstruction
 - Can be applied at the end of the Pythia event generation to the scattered electron as it is written to the event record
 - Only need to apply to the scattered electron with status code 1 (another copy of the vertex scattered electron was already saved with a status code of 21 as the 3rd particle in every event record, but that one is generally ignored by GEMC)

