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Chapter 11

Offline Software

11.1 Introduction

The goal of the offline software is to provide tools to the collaboration that allow design,

simulation, and data analysis to proceed in an efficient, repeatable, and understandable way.

The process should be set up to minimize errors and to allow cross-checks of results. As much

as possible, software-engineering related details should be hidden from collaborators, allowing

them to concentrate on the physical processes and experimental effects they are studying. If

the process is efficient in terms of time invested by the experimenter, it will likely be efficient

in terms of resource use (CPU, storage, network) as well. Also, when the time invested is

minimized, it allows the process to be repeated with variations in assumptions or parameters.

These repeated investigations result in more robust scientific results.

Our hope is that by encouraging communication of ideas with multiple discussion formats

(meetings with remote access, email lists, websites, wikis), we can make most major design

decisions as a collaboration and avoid unnecessary repetition of effort. We see consensus

decision making and good documentation as keys to achieving this goal.

Large-scale computing efforts are common in nuclear and high-energy physics, and there

are several standard components in all of them. High-bandwidth data acquisition and net-

work capability, mass storage, sophisticated reconstruction algorithms leading to high CPU

requirements, data volume reduction schemes, generic and experiment-specific software anal-

ysis tools, detailed simulation software, and calibration and run parameter management, are

all areas that need to be addressed. In this section we present our ideas on the aspects of
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the problem directly related to software development. There is a separate effort at JLab to

characterize and cost the hardware computing infrastructure necessary to support the entire

JLab 12-GeV program.

The CLAS12 software system is being developed around a Service-Oriented Architecture

over a distributed network. Details of the architecture will be given in the following sections.

Core functions of reconstruction, simulation, and analysis are packaged into discrete units or

services, distributed over a network, and loosely coupled and combined to develop analysis

applications. Communication is achieved by passing data between services, and coordinated

through a central process.

Within the high-energy and nuclear physics community, there is currently an expanding

suite of services globally available. The OpenScienceGrid (OSG) project [1] is a consortium

of about 80 National Laboratories, Universities, and Institutions working together to provide

a national computing infrastructure for science. The consortium is funded by the National

Science Foundation and the U.S. Department of Energy’s Office of Science. An example

of distributed computing over the OSG is given by Fermilab’s D0 experiment [2]. Another

example is the Large Hadron Collider (LHC) Computing Grid Project [3, 4], being developed

for the various LHC experiments.

11.2 Service-Oriented Architecture

A software service is a specialized application with these primary characteristics:

• It does one task or a small set of closely related tasks extremely well;

• It is reliably available over a network, either the internet or an intranet;

• It has an interface that utilizes standard data exchange, often (but not limited to)

documents formatted using the Extensible Markup Language (XML);

• The description of the interface is also available on the network and through a URL.

This description, typically an XML document, is viewed as a contract. Enhancements

to the service might extend the contract, but they should not summarily deprecate an

existing interface.
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An architecture developed using services is called a Service-Oriented Architecture (SOA).

Complex applications, usually called clients, are built by piping services together. A given

SOA will support any number of clients. The transport might be the standard in industry,

based on the Simple Object Access Protocol (SOAP), or it may be based on a more specialized

messaging system, such as the Java Messaging Service (JMS).

The potential advantages of an SOA include:

• Modularity. While modularity has been a buzz-word for software developers for

decades, it is clear that SOAs elevate the concept beyond what has been achieved up

to now. While individual applications have been developed that are modular, what is

meant in that case is that blocks of the code that are linked into the final executable

are replaceable with no effect on the bulk of the application. Nevertheless, such mod-

ules generally require a shared object model and binary compatibility. Services require

neither. The modularity achieved by services in an SOA extends beyond functional

decomposition. Services require no object model or binary compatibility, since all the

interaction occurs through implementation agnostic interfaces.

• Shared Code. Services are necessarily shared, common resources. A service to extract

detector geometry will perform the same function, in the same way, for all clients. While

correctness is not guaranteed, consistency is.

• Interoperability. Related to the high level of modularity, inter-operability refers to

the fact that services can be written (in principle) in any language and run on any

machine. Additional inter-operability is achieved by providing well-tested legacy codes

with a communication layer (a wrapper) that talks to the service backbone. In this

manner, old code can be used without expensive refactoring.

• Maintainability. Smaller code modules, as opposed to huge monolithic applications,

are manifestly easier to maintain. They also are more robust against the loss of a primary

developer to retirement or another job. It is far easier to dig into a thousand line service

than a hundred thousand line application.

• Deployment. In an SOA, services and clients are replaced, often (though not neces-

sarily) without announcement. That is because, as mentioned, the exposed interface is
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viewed as inviolate contract, but the implementation is not. Changing a service imple-

mentation does not require a code redistribution or a recompilation on the part of any

other code.

• Loose Coupling. This advantage refers to the fact that clients are unaware of the

implementation details of the service. As such, the chance of unintended consequences

resulting from tight coupling (shared access to memory and objects) is effectively elimi-

nated. Interaction is not through shared objects or memory, but only through interfaces.

It is vital, in an SOA, that only interfaces are exposed to the clients. Furthermore, these

interfaces exchange atomic data by value, not reference.

• Extensibility SOAs are extensible in a unique way: once a useful set of services is

provided, developers can create applications that are unanticipated by the service archi-

tects. Indeed, the unanticipated application is considered a litmus test of a successful

SOA. In the CLAS12 physics environment, we will create basic services with the goal of

providing what is necessary for analysis, visualization, and simulation as we see it today,

but those same services might be combined more effectively than we imagine.

There are several potential disadvantages of SOAs. For example, communicating using

XML or with a messaging system is platform agnostic only when exchanging ASCII (or Uni-

code) data. Encoding binary data in Unicode is potentially time consuming and bandwidth

intensive. To mitigate this problem, the architecture should, in certain cases, ship meta-

data instead of large amounts of binary data. That is, it should transmit a description of or

instructions for accessing large data files rather than the data itself.

While almost all modern computer languages readily adapt to life in an SOA, FORTRAN

is the one language that is problematic. For example, the state of the art in FORTRAN XML

parsers is lagging behind other languages. How much legacy and new FORTRAN code will be

written for CLAS12 is an open question. Nevertheless, the software group will have to provide

extra support for incorporating FORTRAN services and especially clients.

The Service-Oriented Architecture has reached maturity in industry and government.

Many successful commercial applications, such as Amazon, are built on publicly accessible

services. Many government agencies, such as the Department of Defense, have been pushing

their contractors to modify legacy codes to live in a service-oriented environment. The CLAS12
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software group is confident that we can leverage and adapt what has already been proven in

the commercial and government realms for the software needs of the CLAS12 collaboration.

11.3 CLaRa

11.3.1 Introduction

The goal of the ClaRa project is to develop a framework that can be applied to a wide range of

physics data processing applications for the CLAS12 experiments. The framework shall cover

all stages of the physics data processing, including physics and detector simulation, high-

level software triggers, reconstruction programs, physics analysis programs, visualization, etc..

Figure ?? shows the ClaRA framework design architecture.

Figure 11.1: PDP: Physics Data Processing, PCEP: Physics Complex Event Processing, S: Services

11.3.2 The Problem Statement

Physics data processing application development is a collaborative process. On one hand, it

involves computer scientists developing framework and basic software components, while on
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the other hand, it calls for physicists to develop and implement the specific algorithms needed

for simulation, reconstruction, calibration, etc. In addition, there will also be a physicist

developing the data analysis programs to produce the final physics results. The quality of the

physics results depends on the number of end-user physicists that are performing and/or cross-

checking the physics data processing stages. The unprecedented scale and complexity of the

physics computing environment requires substantial software engineering skills from the end-

user physicist. As a result, we have a reduced number of qualified data processing physicists,

resulting in a poor physics outcome. The CLAS12 computing environment must keep up with

fast-growing computing technologies. Taking into account the long lifetime of the physics

data processing applications, we must organize software in a way that permits including or

discarding some of the software technologies in an easy way, without major reorganization

and/or redesign.

Physics Data Processing Environment

We have categorized three groups of people working with the framework. This categorization

is not intended to be exclusive and it is a categorization of interaction rather than of people,

since many people will belong to several groups.

• A. Framework developers: These people are responsible for the design, implemen-

tation, and maintenance of the framework itself.

• B. Physics application software developers: This group of people will be required

to have strong computing skills and more knowledge of the framework than what is

required by the average physicist user.

• C. Framework users: These people are primarily interested in getting physics re-

sults. Using human machine interfaces they compose desired physics data processing

applications and produce histograms, statistical distributions, etc.

Our goal is to widen group C and make this group less dependent on the support of the

A and B groups.

Design Requirements

• The framework shall be simple to use and easy to learn.
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• The framework should be customizable to be able to adapt to the different data pro-

cessing tasks.

• The framework shall provide context-sensitive help and assistance, with many real-world

physics data processing application examples.

• The framework shall provide ready-to-use modules, encapsulating essential functionali-

ties of the physics data processing system.

• The modules shall be reusable and easily replaceable.

• Physics data processing application design and implementation shall require a few or no

programming skills.

• Neither a specific computing environment nor compiling shall be necessary to build and

run physics data processing applications.

• The framework shall provide a graphical environment for physics data processing appli-

cation development.

• The framework shall be network distributed and shall have temporal continuity.

• The new system shall provide web access to the framework for remote configuration and

execution of the data processing applications. The necessary security considerations

must be addressed.

11.3.3 SOA

ClaRa identifies the physics data processing application as a composite application. A com-

posite application is an application that is both assembled and orchestrated. An assembly is a

process of combining together many different pieces into a workable unit, and an orchestration

is making sure that those pieces work together collaboratively with one another to solve the

given problem in a given scenario. Composite applications are known to be more efficient,

robust, and flexible. Composites of the software application known as software services are

more specialized, easily maintainable, and easily replaceable and modifiable. Therefore soft-

ware applications, composed of software services are extremely flexible, robust, and adaptable

to address different data processing needs. The SOA provides the foundation for creating,
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deploying, maintaining, and governing the software services. The ClaRa framework is the

implementation of the SOA architecture.

Design Strategies

ClaRA adopts data centric approach, concentrating its main focus on a data that is moving

and transforming in the system. Its the data flow that defines the essential aspect of the

physics data processing application. ClaRa services communicate with each other through

message passing. The framework supports two distinct messaging protocols and transports:

cMsg over TCP/IP and SOAP over HTTP. The services, using cMsg proprietary publish-

subscribe messaging protocol are designed to compose performance critical applications, and

do not require special security considerations.

Classification of the Services

ClaRa design guidelines are based on adopted design strategic decisions. In order to optimize

service communications and service clustering, ClaRa suggests separation between algorithm

and data services. For example cluster finder is an example of the algorithmic service and

hits in the calorimeter is a data service. ClaRa further categorizes data services into three

categories: event, detector, and statistical data services. Also standard data exchange format

is used between services. EVIO data format is used for data exchange between services.

ClaRa supports flexible segmentation of the data processing application. In the very coarse

level of segmentation, a service is not different then a large monolithic software application.

In this case the ClaRa framework plays the role of a process manager and controller. Fig. 11.2

illustrates an example of a tracking application service composition.

Performance Measurements

Integration and coordination in real-time data and information from network-distributed ser-

vices will clearly carry performance penalties. It is also obvious that poor decomposition of

the physics data processing application in terms of granularity can largely affect composed

application performance.
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Figure 11.2: Service decomposition of a hypothetical tracking application. Ovals represent in-

memory data storage and rectangles represent services. Supervisor is the service that orchestrates

the tracking application.

11.3.4 Web Services

ClaRa web services are developed using J2EE (Java Enterprise Edition) JAX WS 2.0. Cur-

rently all the ClaRa cMsg services written in Java are also deployed as a ClaRa Web Service.

The ClaRa Web Services platform makes CLAS12 services programmatically accessible over

standard Internet protocols.

11.4 Services

11.4.1 Authentication

Services, by their nature, are accessible to remote clients. While the ultimate security policy

for CLAS12 has not been addressed, the software group recognizes that some form of user

authentication will be required. The authentication service will allow other services to ask

whether or not a given user is authorized to receive the information requested.

There are number of ways to implement such a service, including some powerful but

platform-specific solutions, such as the authentication suite provided by Microsoft .NET.
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Again, the loose coupling provide by a Service-Oriented Architecture allows us to define the

authentication interface contract even before we decide on an implementation, and it allows

us to replace implementations to meet growing needs to address unforeseen security concerns.

So we plan to start with an authentication service that will accept a username and pass-

word, and return an integer value for the user’s access level. (We may only ever need a no

access/full access determination.) The first implementation of the service will just return a

value indicating full access for all requests. That will allow other services to build in their

authentication request. From there we will move to an actual implantation, perhaps one using

an LDAP or MySQL server that stores username, passwords, and access levels. That may

prove sufficient, but if not, we can always migrate to an even more secure authentication

scheme without breaking the framework.

11.4.2 Detector Geometry

The geometry service is an example of the Detector Data Service. This is the front-end of

the CLAS12 geometry data, encapsulating data access and data management details from the

service consumers. All the ClaRa algorithm services, including simulation, reconstruction,

alignment, etc., access the geometry service using standard service communication protocols,

provided by the framework. Currently geometry information is stored in the MySQL database,

but in the future we might consider changing the geometry data storage technology (for

example XML), however all of this will be fully transparent to the geometry service consumers.

11.4.3 Event Display

The single event display in the CLAS12 framework will be both a service consumer (a client)

and a service provider. Implementing the event display as a service consumer provides all the

benefits discussed in the section on Service-Oriented Architecture. Additionally, it allows us to

use the thin-client model favored by modern software architects. Thin clients, sometimes called

smart clients, split their application code between data models and processing, performed as

much as possible in a different thread, process or CPU, and visualization. This shrinks the

pure visualization code, allowing it to be deployed remotely or updated frequently without

incurring a huge download penalty. The most familiar and successful model is probably Google

Earth. A thin client is downloaded and runs quickly, but complicated imagery processing is
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performed remotely.

A Service-Oriented Architecture is one way to implement thin clients. As much as possi-

ble, without hampering performance, no visualization processing, such as acquiring detector

geometry, is performed by a service and the thin client obtains the geometry by sending a

request.

In the case of the event display (see Fig. 11.3), the client will use a variety of services, such

as geometry, magnetic field, event streaming, file system access, run metadata, and analysis. It

will also be a service provider through a display service. One service it will provide will include

simple pictures of random online events so that remote users, for diagnostic purposes, can see

pictures of recent events. Another more sophisticated service will be to answer a request for

an image of a specific event viewed in a certain way, such as zoomed in on Region 1 in Sector 3.

Figure 11.3: The event display will consume a number of CLAS12 services. It will also provide a

display service.

Another feature of the event display is that it will employ a plug-in architecture based
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on the reflection capabilities of the JAVA language. This will provide a simple yet powerful

extendibility feature for users who would like to use the event display to visualize and debug

their new analysis and simulation code. Reflection is a way that JAVA applications can

examine all the classes in their path. The event display will look for all classes that inherit

from a specific abstract base class. Once found, the application will create an object from

that class and then provide a set of services for the object, such as notifying it that a new

event has arrived.

In this scheme, neither recompilation or even restart of the event display is required. The

developer extending the event display creates the class, drops it into the path, and the class

will be plugged-in to the application. If the plug-in proves of general use, it can be placed in

the path of the shared event display (e.g., the run in the counting house) and all users will

have access. However, if it is found to be an undesirable feature, the class file can simply be

deleted. All of this adding and removing of features will occur with no changes to the code

or recompilation of the base event display.

11.4.4 Data and Algorithm Services

In addition to our purpose to produce a Service-Oriented Architecture based design, we have

decided to separate data services from algorithm services. An algorithm service, in general,

will accept and process an output data object from a data service and will then produce a

new data object.

Basic Types of Data Services

One of our main design choices is to separate data services dealing with the data objects that

are resident on the disk from the data services that manipulate the data objects in memory.

An objective that we would like to achieve is to make algorithm services independent of the

technology we use for data object persistency. This will allow replacing outdated persistency

technology in the future without affecting user-produced algorithm services. By separating

persistent and transient data services we also hope to achieve a higher level of optimization by

targeting inherently different optimization criteria for persistent and transient data storages.

For example, regarding the data objects on the disk, one should invest more effort to optimize

I/O performance, data size, avoid multiple I/O requests, etc. On the other hand, for the
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transient data in the memory, we should achieve highly optimized execution performance,

APIs, and usage simplicity.

We foresee three major categories of data objects:

• Event data, such as raw data, simulated data, reconstructed data, etc.

• Detector data, describing a detector apparatus in order to interpret the event data.

Examples of the detector data are geometry data, calibration data, alignment data,

slow controls data, etc.

• Statistical data (histograms, n-tuples, etc.)

Specific data services are provided for each of these data categories (see Fig. 11.4).

Figure 11.4: Different data services in the ClaRa framework. Algorithm services deal with transient

data services only.

11.4.5 Magnetic Field

The magnetic field service is implemented in c++ with extensive use of the standard library’s

map construct. The entire field map is divided into individual maps corresponding to various

magnets such as the solenoid and main torus. In addition, it has methods to get the magnetic

field at a certain point, check for consistency within the map, and interpolate values inside

the defined grid spacing.
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Each map can be tailored to the field it holds. For instance, the main torus is defined in

cylindrical coordinates, with φ ∈ [0, π
6
]. The class holding the main torus map then has an

algorithm to calculate the field at any point φ ∈ [0, 2π]. However, this is only good for ideal

fields. For measured fields, the class can be easily extended to handle a case where the field

is known precisely in the entire region. Furthermore, the dimensions and coordinates of the

map’s position and field need not be same. Inside the solenoid field for instance, the position

is stored in (r,φ), while the magnetic field is stored in (x, y, z).

A separate mother class is responsible for loading in and storing the maps from a database

or file. This class is aware of the volumes of the individual maps and sums the fields where

appropriate.

The final layer on this system is the magnetic field ClaRa service. This is where the mother

class is initialized and held in memory. Several mother classes can be held; i.e. one for the

ideal fields, one for the measured fields, and one mix of these two. The service registers itself

with the ClaRa system and can provide the various field maps in several formats depending

on the consumer’s preference. As an example, the service can be polled for an entire map or

for an individual position.

The CLAS 12 GeV torus field is in the ASCII file sptorus map.dat. This file is 495.5 MB

(Aside: the gzipped version is 110 MB. We should in fact place the gzipped file in the SVN

repository otherwise there is no blessed location where sptorus map.dat is available).

The format of sptorus map.dat is:

• φ varies from 0.0◦ to 30.0◦ in steps of 0.25◦.

• r varies from 0.0 to 500 cm in steps of 2.0 cm.

• z varies from 100.0 cm to 600.0 cm in steps of 2.0 cm

• The field values are in kG, and are provided in Cartesian components.

That is the (uniform) grid is cylindrical coordinates, and the field is Cartesian. Each line

in the file has six numbers: φi, rj , zk, Bx, By, Bz. The loop over z is the inner (fastest) loop.

The r-loop is the middle, and the φ-loop is the outer, slowest varying loop. While the ASCII

map is useful, it is way too slow to read for frequent use. We need to create a binary version

which contains a twenty-member, 32-bit word header. (The 80 bytes for this header is in the

noise when it comes file size.) The proposed format is shown in Table 11.1.
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(int) 0xced (decimal: 3309) magic number2̆014to check for byte swapping

(int) Grid Coordinate System (0 = cylindrical, 1 = Cartesian)

(int) Field Coordinate System (0 = cylindrical, 1 = Cartesian)

(int) Length units (0 = cm, 1 = m)

(int) Angular units (0 = decimal degrees, 1 = radians)

(int) Field units (0 = kG, 1 = G, 2 = T)

(int) q1 min (min value of slowest varying coordinate)

(int) q1 max (max value of slowest varying coordinate)

(int) Nq1 number of points (equally spaced) in q1 direction

(float) q2 min (min value of medium varying coordinate)

(float) q2 max (max value of medium varying coordinate)

(int) Nq2 number of points (equally spaced) in q2 direction

(float) q3 min (min value of fastest varying coordinate)

(float) q3 max (max value of fastest varying coordinate)

(int) Nq3 number of points (equally spaced) in q3 direction

Reserved 1

Reserved 2

Reserved 3

Reserved 4

Reserved 5

Table 11.1: Proposed header format for magnetic field, binary file.

The only ambiguity is the meaning of the triplet (q1, q2, q3). For cylindrical coordinates,

to be compatible with sptorus map.dat, the triplet means φ, r, z. It seems most natural that

for Cartesian coordinates the triplet maps to: (x, y, z). Thus for a Cartesian field map, x

would be the outer, slowest-varying grid component. The total number of field points will

be: N = N1 × N2 × N3 and we will store floats, not doubles. Each point requires three

four-byte quantities. The total size of the binary file will be 80 + 3 × 4 ×N . The step size in

direction i is (qimax − qimin)/(Ni − 1). The reserved fields can be used, in some manner to be
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B1

B2

B3

Table 11.2: Reserved fields for magnetic field header.

defined, to indicate scaling or the application of a smoothing function. The field follows the

header, in repeating triplets shown in Table 11.2. The first three entries correspond to the

field components for the first grid point, the next three for the second grid point, etc. The

ordering, for consistency, should be:

(Bx, By, Bz) if the field is Cartesian

(Bφ, Br, Bz) if the field is Cylindrical

For the binary version of the standard file sptorus map.dat, we have for the header shown in

Table 11.3. Thus the three step sizes are:

∆φ = (30 − 0)/(121 − 1) = 0.25◦

∆r = (500 − 0)/(251− 1) = 2 cm

∆z = (600 − 100)/(251− 1) = 2 cm

The size of the binary is 80 + 3 × 4 × 121 × 251 × 251 = 91, 477, 532 bytes.

11.5 Simulation

There are two different, though overlapping, areas in our current simulation effort. One

is focused on validating design decisions for the upgraded detector, the other on building a

modern simulation system that can be used for the life of the CLAS12 program. The former has

two components: (1) a parametric Monte Carlo that can estimate the resolution for charged

particle tracking and (2) a full GEANT3 system that depends on the code base that has

been developed for the current CLAS detector, modified to reflect the new design, including

reconstruction. The latter is an entirely new GEANT4-based, object-oriented design.

11.5.1 Parametric Monte Carlo

One of the fundamental algorithmic challenges in the design of CLAS12 is the problem of track

reconstruction in a non-uniform magnetic field. Not only does the torus produce an inhomo-
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geneous field in the tracking volume, but charged particles emerging from the solenoid must

be tracked as they traverse the fringe field of that magnet. Since no analytic form for the

particle trajectories exist, they must be calculated by “swimming” the particles numerically

through a map of the magnetic field. Track fitting then becomes very expensive in terms of

CPU time. One way to finesse the problem is to linearize it by parameterizing the trajectory

as small deviations from a reference trajectory. The reference trajectory must come from a

“swim”, but subsequent “trial” trajectories, with different starting parameters (momentum,

0xced

0 (grid is cylindrical)

1 (field is Cartesian)

0 (units: cm)

0 (units: decimal degrees)

0 (units: kG)

0.0 (φmin)

30.0 (φmax, degrees)

121 (Nφ)

0.0 (rmin)

500.0 (rmax, cm)

251 (Nr)

100.0 (zmin, cm)

600.0 (zmax, cm)

251 (Nz)

0 (Reserved 1)

0 (Reserved 2)

0 (Reserved 3)

0 (Reserved 4)

0 (Reserved 5)

Table 11.3: Example of header contents for magnetic field, binary file.
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direction), can be computed by a simple matrix inversion. Position resolution is put in at a

set of idealized detector planes. It is also possible to incorporate multiple Coulomb scattering

in this model. This technique has already been used to estimate momentum resolution for

CLAS12. Results appear in other sections of this document. The method cannot give infor-

mation on some things, such as the effect of accidentals, track reconstruction efficiency or

confusion due to overlapping tracks.

11.5.2 CLAS Software with the CLAS12 Geometry

The current CLAS system consists of over half a million lines of FORTRAN, c, and c++

code contained in about 2,500 source code files. It represents a large investment by the

CLAS collaboration over many years. CLAS, with its toroidal magnetic field, also presents the

difficulty of tracking in an inhomogeneous field and that problem has been solved in this

body of code. Recently, the geometry of crucial detector elements was changed to reflect the

CLAS12 design, both in simulation and in reconstruction. The resulting system can now do

a full GEANT3-based simulation and reconstruction of CLAS12 events, in particular charged

particle tracking in the forward drift chambers. Studies using this system have been carried

out to verify momentum resolution results from the parametric Monte Carlo and to estimate

the effect of accidental Møller scattering background on track reconstruction. More of the

details of the detector subsystems and beam line components of the upgraded configuration

are being added to extend the range of these and similar studies.

11.5.3 GEANT4 Object-Oriented Detector Simulation

The GEANT4 simulation software for CLAS12 is called gemc (GEant4 MonteCarlo). The param-

eters that define the simulation (i.e. geometry, sensitivity, magnetic fields, output banks, etc.)

are stored in an external database and used at run-time in STL (c++ Standard Template

Library) objects. The database currently in use is the MySQL database. Other options (e.g.

XML) are also available for consideration.

Geometry

The GEANT4 volumes are defined as follows:

• Shapes, dimensions. Boolean operations of shapes.
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• Material, Magnetic Field, Visual attributes, Identity, Sensitivity and Hit Process.

• Placement(s) in space: position, rotation, copy number.

These parameters are stored in MySQL tables, one table per detector (i.e. HTCC, EC, DC,

etc.). At run time, gemc reads an XML file that specifies which detector to include in the

simulation, including possible tilts and displacements from the original positions.

CLAS12 Geometry Implementation

Particular attention is paid in reproducing in gemc the design of each detector with as

much accuracy and as many details as reasonably achievable. In Fig. 11.5 the SVT GEANT4

representation is shown, while in Fig. 11.6 is shown the GEANT4 implementation of the

various central detectors.

Figure 11.5: The Silicon Vertex Tracker in GEANT4. (Left) The gemc BST, (middle) the CAD

model BST, and (right) the complete gemc implementation of the BST+FST.
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Figure 11.6: The CLAS12 Central Detector. The target (white) is at the CLAS12 center, surrounded

by the SVT (which includes both the BST and FST) (red). The CTOF paddles (cyan) are connected

to light guides (light green) that wrap around the solenoid (blue). The Møller shield is also visible

(blue).
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Generator

In gemc there are two ways to define the primary generator:

1) gemc internal generator: with this method the user defines the primary particle

type, momentum range, and vertex range.

2) external input file: with this method the user defines the format of the input file

and the file name.

The various file formats are registered in gemc by a factory method, which allows derivation

of new formats from the gemc c++ pure virtual methods defined for the input, and to choose

the desired format at run-time.

In addition to the primary particles, an additional luminosity beam can be defined to add

realistic backgrounds to the simulation. The user defines the beam particle type, the number

of beam particles per event, and the time structure of the beam.

Hit Definition

The gemc hit definition is illustrated in Fig. 11.7. A Time Window (TW) is associated with

each sensitive detector. In the same detector element, tracks within the TW constitute one

hit, while tracks separated in time by more than the TW form two separate hits.

Hit Process Factory

Each detector has a custom Hit Process Routine (HPR) associated with it. The gemc HPR

pure virtual method is used to derive all the detector routines, and all HPRs are registered at

run-time by a factory method.

The input to all HPRs is a gemc hit. This stores, for each step in the hit, the following

information:

• Hit Position (global coordinates);

• Hit Position (relative to the volume in which the step occurs);

• Deposited energy;

• Time of the hit;
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Figure 11.7: Hit definition illustration: In the picture two different detector elements are shown in

different colors (red and orange). All tracks within the same TW and the same cell constitute one

hit for that cell. If any track has enough time separation from an existing hit, it will form another,

separate hit.

• Momentum of the track;

• Energy of the track;

• Primary vertex of track;

• Particle ID;

• G4Track ID;

• Identity;

• Detector hit;

• Mother particle ID;
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• Mother G4Track ID;

• Mother primary vertex of track;

• Energy threshold of the sensitive detector.

Each HPR processes the gemc hit and produces STL vectors of double (raw information)

and integers (digitized informations). Each vector corresponds to a MySQL entry in the bank

table corresponding to the HPR.

Elements Identity

In order to correctly identify and process the correct detector element at run time, a class

identifier is used. The following scenarios can happen:

1) For detectors where each element corresponds to a unique volume, the identifier remains

unchanged.

2) For detectors where each element corresponds to a unique volume that is copied, the

identifier copy number is determined at run time.

3) For detectors where different elements correspond to the same volume, the identifier is

processed at run-time by the identifier method of the Hit Process Routines described

above. For example, in the Drift Chamber implementation the single cells are not

GEANT4 volumes (due to the fact that there are too many of them). The sensitive

volumes are instead layers of gas. At run-time, the cell is identified by the HPR based

on the track position in each layer.

Output

The file formats for the simulation output stream are registered in gemc by a factory method.

New files types can be derived from the c++ pure virtual methods defined in gemc. The main

registered formats, selectable at run-time, are:

• txt: readable from any editor or shell. Bank names, variables are printed out.
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• EVIO: this is the format used by the CODA system, and unanimously chosen to be the

default format for the output stream. Banks and variables are identified by integers (tag

and num) defined in the MySQL tables.

The EVIO output can be viewed with the utility evio2xml, that outputs events in XML

format.

Doxygen Documentation

The c++ code is documented with doxygen. The documentation can be found at:

http://clasweb.jlab.org/clas12/gemc_doxygen

Results

A sample event is shown in Figure 11.8. In the right-hand panel a single electron at

θ = 10◦ and φ = 0◦ with momentum p = 8 GeV is simulated. The left-hand panel shows

the graphical user interface that allows the user to control the simulation. Major components

that remain to be added are the forward Cerenkov counters and the preshower calorimeter

(PCAL) located in front of the existing electromagnetic calorimeter. The code has a built-in

event generator and the capability to read in an event file in the LUND format. It has been

built and runs on several linux distributions, Mac, and Windows Vista. Additional tools are

gemc evio2root (converts gemc output files in EVIO format to ROOT trees) and gevio (reads

the EVIO output files from gemc). Documentation can be found at the CLAS12 Software

wiki:

http://clasweb.jlab.org/wiki/index.php/CLAS12_Software

Some preliminary results for the CLAS12 electromagnetic calorimeter (EC) simulated with

gemc are shown in Figure 11.9. The left-hand panel shows the results for the sampling fraction

(the ratio of the energy measured from the calibrated light production to the electron energy)

as a function of electron momentum for electrons at θ = 10◦ and φ = 0◦ (blue points). The

gemc results are compared with the expectation for the calorimeter in the original CLAS6

EC [5]. We are reusing the CLAS6 EC in CLAS12 so we expect the blue points to roughly

match the curve. There will be differences between the two because the CLAS12 EC analysis
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Figure 11.8: A simulated event in gemc. In the right-hand panel red tracks represent the

scattered electron and other charged particles. Green tracks represent neutral particles which

are typically photons here. Red points represent hits in individual detectors, e.g. scintillator

strips in the calorimeter. The graphical user interface that controls the simulation is shown

in the left-hand panel.

is preliminary and the electrons pass through different materials before they reach the EC in

the two detectors. The right hand panel shows the simulated energy resolution of the EC as

a function of electron momentum. The black curve shows the expectation for the EC in the

CLAS6 configuration and blue points are the result of the gemc simulation. Again, the gemc

results are preliminary, but agree with the CLAS6 results at the 10-15% level.

11.5.4 The CLAS12 Fast Monte Carlo

Detailed detector simulation and reconstruction of physics events in CLAS12, based on GEANT4,

is very CPU intensive and hence time consuming due to the high energy and multiplicity of the

Monte-Carlo events and the complexity of the detectors. A dynamically configurable package

for fast Monte-Carlo simulation and reconstruction (FASTMC) has been developed for CLAS12

to allow fast studies of effects of detector resolutions and acceptances on various samples of

Monte-Carlo events. Each step of the chain – simulation and track reconstruction – has been

replaced by modules that parameterize the acceptance and responses of the different detector
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Figure 11.9: EC results from gemc. The left-hand panels shows a comparison of gemc results

(blue points) for the sampling fraction and a semi-empirical calculation for the CLAS6 EC.

The right-hand panel shows the momentum resolution simulated with gemc (blue points)

compared with the CLAS6 results (black curve).

components.

The FASTMC package uses a configuration file provided by the user, which has all relevant

information, including the resolutions and acceptances for different particles and kinematics.

The initial set of parameters was derived from calculations and are getting updated with new

simulation studies from GEANT4 CLAS12 simulations. Sets of parameters were defined for

the central and forward detectors of CLAS12 and for inbending (torus current positive, so

electrons will bend in toward the beam axis) and outbending conditions. Two subroutines

were called in the FASTMC package subsequently to provide information on acceptance, along

with momentum and angular smearing of tracks in CLAS12.

CLAS12 Acceptance

The parameters defining the acceptance of events are listed in the configuration file. The

computed acceptance of ep → eπX events is shown in Fig. 11.10.
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Figure 11.10: CLAS12 acceptances for generated DIS electrons (left), reconstructed electrons (cen-

ter), and reconstructed π+ (right).

11.5.5 CLAS12 Momentum and Angular Smearing

The parameters defining the smearing of particle angles and momenta are listed in the con-

figuration file. The resolutions are calculated using simple parameterizations obtained from

the GEANT4 simulation for momentum, polar, and azimuthal angles using:

σp =
Tmax

T

√

(σp
1 · p)2 +

(

σp
2

β

)2

(11.1)

where,

σp
[1/2] = σ1

[1/2] + σ2
[1/2] · θ + σ3

[1/2] · θ
2, (11.2)

σθ =
√

σ2
1θ + (σ2θ/p/β)2 sin2 θ, (11.3)

σφ =
√

σ2
1φ + (σ2φ/p/β)2. (11.4)

The smearing due to energy loss and multiple scattering of particles in the central detector

is shown in Fig. 11.11.
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Figure 11.11: Resolutions of electron polar (left) and azimuthal (center) angles in the forward

detector and π− in the central detector (right).

FASTMC allows study of the effects of detector resolutions and smearing on various physics

observables. The missing mass resolution of the reaction ep → eπX is shown in Fig. 11.12.

The distribution of events from Λ and Σ decays as a function of the angle between planes

containing the Λ and the K are shown in Fig. 11.13. Fig. 11.14 shows the W distribution for

a two pion production reaction calculated from the electron momentum and using detected

pions in the forward and central detectors.

11.6 Event Reconstruction

The main goal of the event reconstruction program is to provide track parameters and particle

identification on an event basis, to any physics analysis. These events will in practice either

come from real data or from the Monte Carlo simulation. The reconstruction program should

also be able to perform specific tasks, like sending hits and corresponding fit results to the

event display service.
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Figure 11.12: Missing mass resolution for ep → e′πX for forward (left) and large angle π+ (right)

events.

11.6.1 Socrat

This program is currently developed in c, but will eventually be coded in c++, with an object

oriented structure and modified to take advantage of multi-threaded processors. Even if the

tracking techniques (track finding and track fitting) can be used in a detector-independent

form, their implementation will be adapted to the geometry of the CLAS12 spectrometer, and

therefore split in two parts:

Central Tracking: this part provides the reconstruction of particles detected in the Silicon

Vertex Tracker, located inside the high magnetic field of the solenoid. Due to the approxi-

mate φ symmetry of this region, we implemented a Kalman Filter algorithm using cylindrical

coordinates. A track finding procedure has also been developed to separate real tracks from

the background.

Forward Tracking: particles produced at small angles are detected in two different sub-

systems, the Forward Vertex Tracker and the Drift Chambers. A key issue of the tracking

program is to provide an algorithm that will efficiently match track segments found in these

detectors, in the presence of background. As for the central part, we also implemented a

Kalman Filter algorithm.

The last task of the tracking program will be to link tracks found in these two regions, that

will include a vertex fitting algorithm, thus providing a full event reconstruction. Different

outputs (not only the structure, but also the contents) will be produced, depending on the

incoming request.
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Figure 11.13: Angle between the Λ and the K for different processes for generated (left) and

reconstructed (middle) distributions. The right panel shows the corresponding efficiencies (circles)

as a function of a cut on that angle and the corresponding contamination (triangles).

11.6.2 Tracking in Java (jSocrat)

As described above, tracking in CLAS12 is done in three detectors, the Drift Chambers (DV),

and the Forward and Barrel regions of the Silicon Vertex Tracker. Event detector information

is passed to the tracking program, jSocrat, via the standard EVIO file format. jSocrat contains

two separate components: forward and central tracking. Central tracking deals with the barrel

region of the SVT, while forward tracking connects the forward region of the SVT with the

drift chambers. The central and forward tracking can be run independently from one another,

and therefore designed to be run on separate threads. jSocrat is largely based on Sebastien

Procureurs program, Socrat, developed within the CERN Root C-Interpreter, and borrows

most of the algorithms from Socrat. Hit-linking in the forward tracking is accomplished

separately for the drift chamber and the forward SVT. In the drift chamber, the task is

to find tracks among the hits: first, grouping hits within each superlayer to form clusters,

then linking pairs of clusters to produce segments, and then linking the segments together

to produce tracks. Using similar criteria, track segments are also constructed by hits in the

forward SVT. (For a more detailed description of the algorithms, see the javadoc of jSocrat

in the CLAS12 source code repository). For each of the tracks found in the DC, a Kalman

filter is run to calculate the track . During the Kalman filter, the path is tracked through the

magnetic field backwards from the DC, until the track reaches the plane of intersection with

the closest plane of the FSVT. The nearest FSVT track segment to the extrapolated track is
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Figure 11.14: W distributions for exclusive two pion processes in CLAS12 from FASTMC. W com-

puted from the electron (left), the detected pions in the forward detectors (middle), and the detected

pions in the central detectors (right).

used for continuing the tracking as far upstream as possible. The process is similar for the

central tracking. The barrel SVT hits are linked together to form strip intersections. Then

these intersections are linked together to form tracks. For each track, intersection positions are

recalculated using a helical approximation that utilizes the other three (or two) intersections

in the track. (For a more detailed description of the algorithms for the BSVT, see the javadoc

of jSocrat in the CLAS12 source code repository). This is done to get a better estimate of

where the particle hit the strips in the BSVT. Then, a Kalman filter is used for estimating

the tracking parameters. Because the track has to be swum backwards a shorter distance in

the central tracking than in the forward tracking, the Kalman filter algorithm for the central

tracking takes less time. Both Kalman filters use the same time-step.

The most time-consuming task in jSocrat is running the Kalman Filter on the forward

tracks. The Kalman filter can thus be multi-threaded. In the Kalman filter, jSocrat utilizes
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the Clas12 detectors field map files, which it loads in at start time from a query to the Magnetic

Field Service.

The output in jSocrat is an EVIO file, the banks of which are described in the javadocs of

jSocrat.

Currently, vertex finding is being developed.

11.7 On-Line Software

During the actual data-taking periods of CLAS12, it is of course expected that there will be

full construction of a significant fraction of the acquired data. Such analysis insures that

the data is of expected quality, and permits monitoring of the individual detectors from a

different perspective than just hardware readout, such as wire profiles, ADC spectra, etc..

Experimenters should expect they should also be able to monitor the performance of the

CLAS12 detector by examining the specific events and physics parameters under study. This

capability will require full event reconstruction.

In addition, some reconstruction analysis can be utilized as a Level-3 trigger to filter un-

wanted events from the data stream, thus minimizing storage, bandwidth, and other precious

resources.

The entire suite of services will be available to the online and data acquisition system,

either directly as network available resources, or as shared code.

11.8 Code Development and Distribution

11.8.1 Code Management

For CLAS12, we have elected to use the widely adopted and free (open source) subversion

revision control system. Subversion is the open source software community’s replacement for

cvs. It has many of the same features and employs the same no-lockout paradigm. (That

is, conflicts are resolved through merging rather than avoided through code locks – the latter

generally found to be too draconian and a hindrance to productivity.) In addition, subversion

plug-ins are available for the popular integrated development environments, such as the widely

used eclipse. This allows one to check in, check out, track changes, and merge differences with
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mouse-clicks in a development environment rather than through a command line.

In CLAS, all users, whether or not they were developers, accessed the repository, downloaded

code, and built scripts. They then tried, with mixed results, to build the complex packages.

We have abandoned that approach. In CLAS12, we have decided to implement a three-tiered

code distribution system. The first level will be access to the subversion repository. Only

developers will access code in this manner. The second level will be code releases, in the form

of archives, and intelligent build scripts that do not rely on environment variables. In CLAS,

the user wanting to use an application accessed the repository and downloaded the latest code,

which may have included bugs checked in the night before. In CLAS12 the user will go to a

web page and download a specific, tested released. A third tier of release, for limited systems

(probably only for whatever Linux system JLab is supporting) is to distribute binaries. This

in an area in which we expect and have already obtained substantive student involvement.

11.8.2 Code Release

The consensus in the software group is to base our software process on what is known in

the software community as agile programming. Part of agile programming is a rapid release

schedule based on development cycles called sprints. The exact frequency has not yet been

determined, but the canonical sprint duration is one month: two weeks of development and

two weeks of testing and bug fixing. So every month a new version of all software is re-

leased, typically with modest changes from the previous release. Functionality is to advance

incrementally, as opposed to infrequent but massively different updates.

11.8.3 Software Tracking

The software group recognized that complicated software development is aided by require-

ments, task, and bug tracking. To this end, Christopher Newport University has deployed a

web-based commercial package called Gemini for the CLAS12 effort. Gemini will allow us to

enter projects corresponding to the main development efforts, such as gemc for the GEANT4

simulation. Then resources (developers) are assigned to the project. The time development

will match the code release sprint cycles. For the next cycle, the new tasks will be entered,

as well as the bugs that have to be fixed. Developers will enter estimates regarding the time

it will take to complete the tasks and fix the bugs. Project managers can see if the estimated
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time fits with the cycle duration, if not they can adjust accordingly by postponing some tasks

or adding new tasks. Developers can log their time to a task or bug so as to develop better

intuition for estimating. The subversion revision control system can be set up so that any

code checked in must have a comment that ties it, by ID to a task or bug in Gemini.

11.9 Quality Assurance

The Service-Oriented Architecture is composed of many integrated services loosely connected.

The usual interaction between the consumer of a service and the supplier of the service is not

direct: generally there will be several processes and a network in between. As a result, during

an extended development process, there becomes a strong possibility of errors invading the

code, rendering it either unusable or incorrect. Quality assurance of developing projects then

becomes a major concern.

The program being proposed is extensive suite checks to assure that every major release is

thoroughly checked prior to being made available to the CLAS12 Collaboration. In addition, at

any level the individual code developer will be able to check any version against the standard

suite.

The suite of reconstruction standards will include three types of data. The first is pure

simulation, that is Monte Carlo generated data through the CLAS12 detector without any

detector resolution included. Reconstruction of this data set should return exactly what was

input; any deviation is suspect and cause for special consideration. The next set of standard

data will be a persistent Monte Carlo data set with full simulation, whose results should

remain consistent with input parameters. Finally, varied sets of actual data, fully testing as

completely as possible all aspects of the reconstruction software, will be utilized to track the

code development. Of course, in all data types, performance in terms of compute resources

and storage will also be tracked. Databases of performance results will be maintained as a

service for comparison.

11.10 Computing Resources

Based primarily on experience from the 6 GeV CLAS computing usage, estimates have been

made for computing resources required from 2012 through turn-on in 2015 and through the
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year 2017. These estimates are summarized in Table 11.4.

Year 2012 2013 2014 2015 2016 2017

Simulation

CPU 5.7E4 5.7E4 5.7E4 5.7E4 5.7E4 5.7E4

Petabytes 2 5 7 5 5 5

DAQ

Petabytes 0 0 0 2.2 2.4 2.5

Calibration

CPU

Reconstruction

CPU 0 0 0 7.8E3 8.4E3 9.1E3

Petabytes 2 5 7 12 12 13

Table 11.4: CLAS12 computing resources.
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