CLAS 12 Jar Files

This report outlines a scheme for managing the many (and sometimes conflicting)
jar files used by CLAS12 software.

It is a simple, free approach. It is not as good as more expensive enterprise
solutions. It will accomplish something less than 100% of what we’d like, but it
aims to be a vast improvement over the current unmanaged anarchy.

It is really little more than a directory structure into which the jars will be placed
and versioned.

It is not automated; developers must buy-in. They are responsible for putting their

jars into correct location. We do not have a librarian dedicated to building all the
projects and placing the jars.

The whole directory structure: all jars, all versions, will be available as an svn

project named clasllib in the CLAS12 repository. It will start small and grow
quickly.

/A

David Heddle CHRISTOPHER NEWPORT
17 October, 2013 UNIVERSITY



Some more introduction

The clasllib project contains: documentation, jar files, and the occasional
native library (e.g., for the native 3D libraries). The project, under no
circumstances, contains source code or build scripts.

Developers have the following requirements:

* They must follow the directory structure.

* They must keep source code and build scripts out of the project.

* Once ajar is placed in a versioned folder (as described below) the developer
cannot, under any circumstances, break the API. Bugs can be fixed in old

versions, but the APl cannot change. This is spelled out more fully on the next
page.



Versioning

This versioning applies to the jar files in the clasllib project, independent of any versioning
scheme you may have for your source code. Of course it will helpful if they are lockstep.
The scheme is very simple and recognizable:

X.Y.2

X is the major release number. Change X when there is a major change in functionality or
the API. All effort should be made to the preserve API through overloading, with the old API
signatures marked, if appropriate, with a deprecated tag.

Y is the minor release number. It represents major bug fixes but essentially the same or

only slightly augmented functionality. It can add (modestly) to the APl but the previous API
must be fully supported.

Z is a revision number. It represents minor bug fixes, with absolutely no change to the API.

Only X is required. X, Y and Z are not limited to one digit. 4.32.41 is a later minor release
than 4.5.1 (since 32 > 5).



Some more on versioning

It is recommended that a jar file does not
contain a version number in its name, but
maintains a generic name. For example, there
may be many folders under the jMath path,
each with unique version numbers, but within
each of those folders (ina 1ib folder) you
will find jMath. jar. (Differing, of course.)

In addition to numbered folders there can be
a folder named latest that has the latest
and potentially unstable release. It may or
may not be identical (it probably starts out life
that way) with the highest version in the
numbered folders.

All jars (there may be more than one for some
projects) are in the lib folder.

jMath

vl.l vl.2 latest




clasllib structure

Project root [F====eeo_____

2> clasllib Special case of a library (in this case java
3D) that requires platform dependent
binaries

7
/
/
/
/
/
4

jMath bCNU trac j3d

.
\
3
\
A

AN
v1.0
vl 4

vl.l

_lib_

linux64 mac

) 7

gluegen-rt.jar

b

bCNUImages.jar

. libjogl.inilib I



Responsibilities? Requires developer buy-in (no code czar)

Development

bCNU working clasllib
folder clasllib
trunk Build script bCNU working
should copy the folder
. Bl : jar to the T
build.xml ; correct place in c
I bin °re the claslLib svn
' f working folder ~
b - Dt T docs
Teebllir README
TR b

Developer must commit changes to clasllib

A target (note no environment variables) in bCNU’s build.xml

<property name="version" value="v3.1b"/>
<property name="vdir” value="../../clasdJLib/bCNU/${version}/1lib"/>
<target name="bcnujar">
<mkdir dir=“${vdir}" />
<jar
destfile="${vdir}/bCNU.jar"
basedir="../bin">
</jar>
</target>




