
The swimmer Java library in clasJLib

The swimmer library in the clas12 repository has been refactored. It wasn’t ready for prime time—and I

don’t think anyone was using it. But if so, please note that the API has changed, as well as the input

units.

The input units are now:

 Meters for any lengths

 Degrees for any angles

 GeV (modulo factors of c) for mass, energy and momentum

We anticipate that any modifications to swimmer will be backwards compatible from this point

forward.

The swimmer library depends on the magfield library (also in the repository and in also in

clasJLib). The magfield library is standalone.

The swimmer library will integrate particles through a magnetic field. It is not CLAS specific—but at the

moment the magfield library, which it uses to obtain field vectors, only has map file for the CLAS 12

torus and solenoid.

The swimmer library uses the Lund particle designations. Support for the Lund format is provided in the

cnuphys.lund package within the swimmer library. We probably should consider making a

common, standalone lund Java library.

As of 12/1/13, the swimmer library was based on a constant-step Runge-Kutta 4 integrator. We are

working on an adaptive stepsize RK4 for the next release.

The basic steps to swim a particle are:

1. Use magfield to create an IField object from one or more field maps.

2. Use the IField object to create a Swimmer object. The Swimmer can be used to swim any

number of particles, and it is thread safe. You only need a new Swimmer if you change magnetic

fields.

3. Obtain a LundId object for the particle you want to swim.

4. Set the initial and stopping conditions.

5. Swim the particle.

The swimming has two basic modes of operation. One mode, the trajectory mode, is when the

swimming as carried out and the results are returned in a SwimTrajectory object. This is useful if you

want to store the trajectory at a certain number of points. For example, ced uses this mode so that after

the particle is swum ced can redraw the trajectory as needed without reswimming. The other mode of

operation is the listener mode. In the listener mode, a listener is called at every advance of the

integration, but no trajectory is cached and no SwimTrajectory object is returned.

Examples

Note: there is a class cnuphys.swim.Example in the simmer library where you can find the

examples here coded and tested.

Reading the magnetic fields

The Example class uses a method getMagneticFields() to load the torus and solenoid. It works

on the assumption that the current working directory is at the same level as clasJLib, where the field

maps are stored in the data folder.

 private static Torus torus;

 private static Solenoid solenoid;

 private static CompositeField compositeField;

 //tries to get the magnetic field assuming it is in clasJLib

 private static void getMagneticFields() {

 //will read mag field assuming we are in a

 //location relative to clasJLib. This will

 //have to be modified as appropriate.

 String clasJLib = "../clasJLib";

 //see if it is a good location

 File file = new File(clasJLib);

 if (!file.exists()) {

 System.err.println("dir: " + clasJLib + " does not exist.");

 System.exit(1);

 }

 //OK, see if we can create a Torus

 String torusFileName = clasJLib +

"/data/torus/v1.0/clas12_torus_fieldmap_binary.dat";

 File torusFile = new File(torusFileName);

 try {

 torus = Torus.fromBinaryFile(torusFile);

 } catch (FileNotFoundException e) {

 e.printStackTrace();

 }

 //OK, see if we can create a Solenoid

 String solenoidFileName = clasJLib + "/data/solenoid/v1.0/solenoid-srr.dat";

 File solenoidFile = new File(solenoidFileName);

 try {

 solenoid = Solenoid.fromBinaryFile(solenoidFile);

 } catch (FileNotFoundException e) {

 e.printStackTrace();

 }

 //OK, see if we can create a composite field

 compositeField = new CompositeField();

 //print some features

 if (torus != null) {

 compositeField.add(torus);

 }

 if (solenoid != null) {

 compositeField.add(solenoid);

 }

 //change sign of torus field so electrons bend toward beamline

 torus.setInvertField(true);

 }

Common Setup

There is some common setup regardless of what integration mode we choose. Suppose we want to

integrate an electron with kinetic energy of 1 GeV from the nominal target position (0, 0, 0) with a theta

of 30° and a phi of 0. And suppose we only want to use the torus.

 //create a swimmer for our magnetic field
 Swimmer swimmer = new Swimmer(torus);

 //OK lets integrate an electron and see what we get

 LundId electron = LundSupport.getInstance().get(11);

 //vertex position

 double xo = 0.0;

 double yo = 0.0;

 double zo = 0.0;

 //initial angles in degrees

 double theta = 30.0;

 double phi = 0.0;

 //these will be used to create a DefaultStopper

 double rmax = 7.0; //m

 double maxPathLength = 8.0; //m

 //step size in m

 double stepSize = 5e-4; //m

 //The momentum, if the KE = 1 GeV

 double momentum = electron.pFromT(1.0);

Trajectory Mode

In the trajectory mode we want to save all the steps. We do that here and then generate a crude

console plot to see if we get something reasonable.

//save about every 20th step

 double distanceBetweenSaves = 20*stepSize;

//swim the particle, and return the results in a SwimTrajectory object

 SwimTrajectory traj = swimmer.swim(electron, xo, yo, zo, momentum, theta, phi,

 rmax, maxPathLength, stepSize, distanceBetweenSaves);

 //how many steps did we save:

 System.out.println("Trajectory has: " + traj.size() + " stored points");

 //lets create a crude terminal plot

 double xx[] = new double[traj.size()];

 double zz[] = new double[traj.size()];

 int index = 0;

 for (double v[] : traj) {

 xx[index] = 100*v[0]; //convert to cm

 zz[index] = 100*v[2];

 index++;

 }

 TerminalPlot.plot2D(80, 20, "z (horizontal, cm) vs. x (vertical, cm)", zz, xx);

The “plot” matches what ced produces:

Trajectory has: 706 stored points

 z (horizontal, cm) vs. x (vertical, cm)

2.63e+02 |+---------+---------+---------+---------+---------+---------+---------+---------|

 | *|

 | ******** |

 | ******** |

 | ******** |

 | ******** |

 | ****** |

 | ***** |

 | ***** |

 | ***** |

1.38e+02 + **** +

 | **** |

 | **** |

 | **** |

 | **** |

 | **** |

 | **** |

 | **** |

 | **** |

 | **** |

0.00e+00 +*** +

 |+---------+---------+---------+---------+---------+---------+---------+---------|

 0.00e+00 8.10e+01 1.62e+02 2.43e+02 3.24e+02 4.05e+02 4.86e+02 5.67e+02 6.48e+02

Listener Mode

We use this mode when we are not interested in a trajectory. It will call a listener at every integration

step. He we use a DefaultListener as an example. It simply caches the last step it is given and the total

number of steps.

//same problem using a listener and a default stopper

 DefaultListener listener = new DefaultListener();

 DefaultSwimStopper stopper = new DefaultSwimStopper(xo, yo, zo, rmax,

maxPathLength);

 swimmer.swim(electron, xo, yo, zo, momentum,

 theta, phi, stopper, listener,

 maxPathLength, stepSize);

 double lastY[] = listener.getLastPosition();

 System.out.println("\nresult from listener method");

 System.out.println(String.format("count = %d t = %7.4e v = [%7.4f, %7.4f,

%7.4f]",

 listener.getCount(),

 listener.getLastTime(),

 lastY[0], lastY[1], lastY[2]));

This produces the output:

result from listener method

count = 14117 t = 2.3545e-08 v = [2.6310, 0.0000, 6.4869]

