

Search for Excited Cascade (Ξ^{*-}) Hyperons in the Reaction $ep \rightarrow e'K^+K^+K^-(\Lambda/\Sigma)$ using CLAS12

Achyut Khanal (Advisors: Brian A. Raue and Lei Guo) Florida International University/CLAS Collaboration

Abstract

Doubly strange cascade hyperons are experimentally underexplored. The CLAS12 very strange physics program aims to study the electroproduction of these states. The reaction $ep \rightarrow e'K^+K^+K^-(\Lambda/M)$ $\Sigma 0$) is studied with electron-beam energy of 10.6 GeV using CLAS12 RG-A data. Scattered electrons are detected with either the forward detector (FD), covering a polar angle range of 5^o to 35^o to study electroproduction, or with the forward tagger (FT) covering a polar angle range of of 2.5° to 4.5° to study quasi-real photoproduction. The CLAS12 detector with spatial coverage of a solid angle of nearly 4π is used to detect charged kaons in the final state. $\Lambda/\Sigma 0$ hyperons are reconstructed using the missing mass technique to explore intermediate double strange hyperons (Ξ^{*-}) which decays to K^{-} and $\Lambda/\Sigma 0$. No statistically significant Ξ^{*-} was found in $e'K^+K^+$ missing mass spectra in the FD acceptance only. Upper limits on the production cross section for the reaction $ep \rightarrow e'K^+K^+\Xi^{*-}$ (1820) is being investigated for low- Q^2 and high- Q^2 electroproduction process.

Motivation

Particle	J^P	Overall status
$\Xi(1320)$	$\frac{1}{2}^{+}$	***
$\Xi(1530)$	$\frac{1}{2}^{+}$ $\frac{3}{2}^{+}$	****
$\Xi(1620)$	2	*
$\Xi(1690)$		20 02 22
$\Xi(1820)$	$\frac{3}{2}^{-}$	***
$\Xi(1950)$	_	Q ***
$\Xi(2030)$	$\frac{5}{2}$?	*** *** *** *** *** ***
$\Xi(2120)$	4	*
$\Xi(2250)$		**
$\Xi(2370)$		**
$\Xi(2500)$		*

- There are many more predicted Cascade states than we have seen experimentally.
- Address the "missing baryon" problem.
- Validate SU(3) flavor symmetry of QCD.
- Advance QCD to understand the physics of the early universe.

Early Experiments on E search

- Used K^- beam on low-sensitive hydrogen bubble chamber
- SPS charged hyperon beam at CERN studied Ξ^-N interaction.
- Kaon production using MPS at BNL claimed multiple Ξ states.
- CLAS6 photoproduction data showed $\Xi^{-}(1320)$ and $\Xi^{-}(1530)$

CLAS12 Spectrometer

Forward Detector:

 $(5^o \leq \theta \leq 35^o)$

- TORUS magnet
- HT Cherenkov Counter
- Drift chamber system LT Cherenkov Counter
- Forward ToF System
- Preshower calorimeter
- E.M. calorimeter (EC)

 Central Detector:

$(35^o \leq \theta \leq 125^o)$

- SOLENOID magnet
- Barrel Silicon TrackerCentral Time-of-Flight
- **Upgrades:**
- Micromegas (CD)
- Neutron detector (CD)
- RICH detector (FD)
- Forward Tagger (FT) $(2^o < \theta < 5^o)$

V. Burkert et al., Nucl. Instrum. Meth. A 959(2020)

CLAS12 RGA Experiment

- Electron beam:: 10.6 GeV and 10.2 GeV Longitudinally polarized electron beam from CEBAF
- Beam Current:: 5nA to 75nA
- Target :: 5 cm unpolarized liquid hydrogen (LH2) target
- The Superconducting Torus and Solenoid Magnet for tracking
 Forward Torus on to detect electrons and photons at a very
- Forward Tagger on to detect electrons and photons at a very forward polar angle of 2^o to 5^o

DATA Analysis Strategy

$$ep \rightarrow e'K^{+}K^{+}\Xi^{*-}(1820)$$

 $\Xi^{*-}(1820) \rightarrow K^{-}(\Lambda/\Sigma 0)$

- Scattered electron e' detected in two different regions
- Low- Q^2 region to study quasi-real photoproduction e' detected in the FT system which covers a very forward polar angle range of 2^o to 5^o
- High- Q^2 region to study electroproduction e' detected in the FD system which covers a forward polar angle range of 5^o to 35^o
- Charged kaons detected in the CLAS12 detector (FD) in coincidence with scattered electrons.
- Analyzed Fall2018 and Spring2019 data. Total six data sets analyzed with FT/FD electron separately .

Acknowledgements

- Jefferson Lab CLAS Collaboration
- Florida International University
- This work is funded by DOE Grant DE-SC0013620

Charged Kaon selection

- Kaons detected in FD ($5^o < \theta_{K^{\pm}} < 35^o$)
- DC fiducial cut
- $0.4 < P_{K^{\pm}} < 10.604 \text{ GeV}$
- $0.4 < \beta_{K^{\pm}} < 1.05$
- $-10 < v_{K^{\pm}}^{Z} < 1 \text{ cm}$
- Momentum dependent vertex time cut

Missing Mass Spectra

- $\Xi^-(1320)$, $\Xi^-(1530)$ clearly visible (First-time seen from electroproduction data) in the $MM(e'K^+K^+)$ distributions.
- Smeared $\Lambda/\Sigma 0$ visible in the $\text{MM}(e'K^+K^+K^-)$ distributions.
- Background modeled with event mixing technique.
- Fit uses Gaussian convolution with polynomial Bg. Template.

$\mathbf{MM} = \mathbf{gaus}(\Lambda) + \mathbf{gaus}(\Sigma 0) + \mathbf{C}^*[\mathbf{bck}]$

Background shape in $MM(e'K^+K^+)$ for $e'K^+K^+K^-$ events

• Used multiple techniques (Event Mixing, Sideband, Fit weighting) to model background shape.

MC Simulation

- Performed GEANT4-based MC simulation for reaction efficiency.
- MC tunning was performed by measuring known $\Xi^-(1320)$ width as a function of the momentum smearing factor to derive experimental resolution.
- Ξ^{*-} (1820) state experimental mass resolution inferred from MC.

 $ep → e'K^+K^+ Ξ^{*-}$ (1820) → $e'K^+K^+ K^-$ (Λ/Σ0)

Signal yield/Statistical significance

 $\mathbf{MM} = \mathbf{gaus}(\mathcal{E}^{*-}(1820) \mathbf{fixed} \mu/\sigma) + \mathbf{C}^{*}[\mathbf{bck}]$

- Test Statistics (TS) = $2 \ln \lambda$
- Statistical Significance in terms of $\sigma = \pm \sqrt{TS}$

Preliminary cross section upper limit for $ep \rightarrow e'K^+K^+\Xi^{*-}(1820)$

• Converted 95% upper-limit yield to upper-limit on the cross section in FT-e $Q^2(10^{-2}$ - $0.3~GeV^2)$ and FD-e $Q^2(10^{-1}$ - $0.6~GeV^2)$ range. Our preliminary result for the upper limit cross section is extracted to be approximately around 2 nb and further work to set on the production cross section of the reaction $ep \rightarrow e'K^+K^+\Xi^{*-}$ as functions of Ξ^{*-} mass is in progress.

Summary

- No statistically significant Ξ*- (1820) signal was observed from the pass1 data using CLAS12 Forward Detector acceptance.
- Estimated upper limit on the \mathcal{E}^{-*} (1820) yield using maximum log-likelihood ratio test method for counts and fit statistics.
- Upper limits on the production cross section for $ep \rightarrow e'K^+K^+\Xi^{*-}(1820)$ is being investigated for low- Q^2 and high- Q^2 electroproduction process.