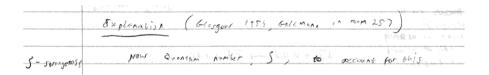
Hadron Spectroscopy With Strangeness, Glasgow

Strangeness Analyses with CLAS12

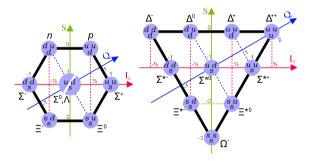
at Jefferson Lab

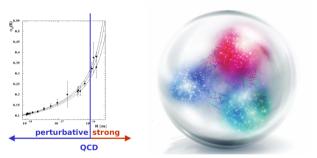
Stuart Fegan University of York April 4th, 2024

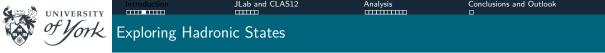


k == 13	UNIVERSITY	Introduction	JLab and CLAS12	Analysis	Conclusions and Outlook
	of Vord	<u>c</u> .	- A Personal Anecdo		
	9 JOIR	Strangeness -	- A Personal Anecdo	te	

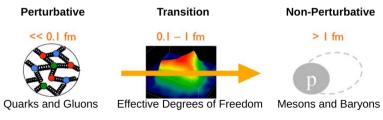
Strange porticly production in storing interactions Monchester 1147 Maynes Field Corves bracks and married a (class chinter) 3 Veg" presides, crossed in T-p incrustices (song incrusion) always make in pairs Decay singly offer minding orin Lieting 7 ~ 211 ~ 3×10"5 13 aprilow Very long bod (with interaction) Since investion i prits for sense Suplanation (Glarger 1955, Galeman, in non 257) New Question member - 5 , to second for shis . 5- surgeose · Hedrons (TT, K, P, A, A) but sure electro romatic) romanias work .

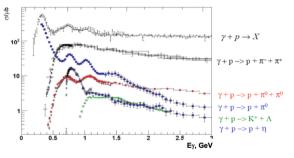

· Strong and erm expressions 5 AS=0 · neah interactions vistore 5 AS=0 t1 $\frac{K^{+}}{K^{-}} = \frac{K^{+}}{K^{0}} = \frac{K^{-}}{S} = -1$ Kairma The in onsignation Beryong ∧ x ≤ 5 5=-1 Querks - a new syre of armit 5- Ereck Q= 3 , 5=-1 TO K' A 0+0 = 1-1 AS=0 D -1+1 = 0+0 0000 0+1 = 0+1 A8=0 Serong interaction Franking of the descript 15: + Alemer as prove Fallow or neck Ju + Hud -> Jd +uds + forditar Quark flow diagram is used to case liver no prices Calification ! Less is really after maning holiefe talfer innin brack in simp


k	UNIVERSITY	Introduction	JLab and CLAS12	Analysis	Conclusions and Outlook	
	010	<u> </u>				
	JOIR	Strangeness				
\sim	\bigcirc					


- Introducing the strangeness quantum number greatly aided development of the quark model
- Categorising the known hadrons into multiplets emphasised connection to symmetry groups
- Lead to the prediction, and discovery, of the Ω⁻, a triumph of the quark model approach

(UNIVERSITY	Introduction	JLab and CLAS12	Analysis	Conclusions and Outlook	
-AK	of Vml	Mativation				
	JUIK	Motivation				


- Quark models have played a vital role in the non-perturbative regime of QCD, predicting numerous states
- As with the Ω⁻, many of these states have been confirmed experimentally
- However, Constituent Quark Models don't tell the full story


By studying hadronic states, through their production and decays, we can observe QCD in action, and attempt to answer some fundamental questions;

- What is the internal structure and the internal degrees of freedom of hadrons?
- What is the origin of quark confinement?
- What is the role of Gluons?
- Where do properties of hadrons, such as spin and mass, come from?

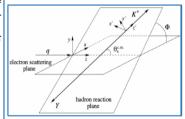
- Reactions involving strangeness offer an additional lens to probe hadrons
- Some states will have greater coupling strength to strangeness channels
- Kinematics can favour higher mass states, e.g. $N^* \to KY$ versus $N^* \to \pi N$

R. Beck and U. Thoma, EPJ Web Conf 134, 04003 (2017)

6 m 3	UNIVERSITY	Introduction	JLab and CLAS12	Analysis	Conclusions and Outlook
	LIC 1	Polarisation			

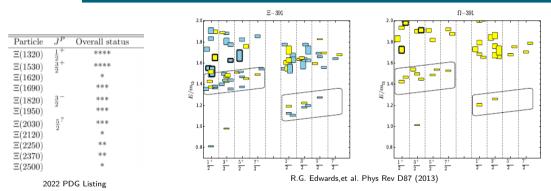
$$\begin{split} \frac{d\sigma_v}{d\Omega_K^{c.m.}} &= -\mathcal{K}\sum_{\alpha,\beta} S_\alpha S_\beta \Big[R_T^{\beta\alpha} + \epsilon R_L^{\beta\alpha} + c_+ (^c\!R_{LT}^{\beta\alpha}\cos\Phi + ^s\!R_{LT}^{\beta\alpha}\sin\Phi) \\ &+ - \epsilon (^c\!R_{TT}^{\beta\alpha}\cos2\Phi + ^s\!R_{TT}^{\beta\alpha}\sin2\Phi) + hc_- (^c\!R_{LT}^{\beta\alpha}\cos\Phi + ^s\!R_{LT}^{\beta\alpha}\sin\Phi) + hc_0 R_{TT'}^{\beta\alpha} \end{split}$$

Photoproduction and electroproduction of eta mesons

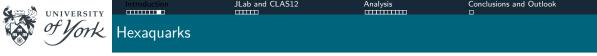

G. Knochlein (Mainz U., Inst. Kemphys.), D. Drechsel (Mainz U., Inst. Kemphys.), L. Tlator (Mainz U., Inst. Kemphys.) (Jan, 1995) Published in: Z.Phys.A 352 (1995) 327-343 + e-Print: sucl-th/9506029 (nucl-th)

Response functions

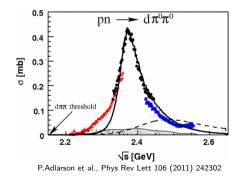
R(Q²,W,cos θ_Kc.m.)

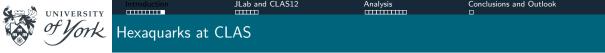

TABLE I. Polarization observables in pseudoscalar meson electroproduction. A star denotes a response function which does not vanish but is identical to another response function via a relation in App. A.

			Target			Recoil				1	Farge	t + 1	Recoil	1		
β	-	-	-	-	x'	y'	z'	x'	x'	x'	y'	y'	y⁄	z'	z'	z'
α	-	x	y	2	-	-	-	x	y	z	x	y	z	x	y	z
T	R_T^{00}	0	R_T^{0y}	0	0	$R_{T}^{y'0}$	0	$R_T^{x'x}$	0	$R_T^{x's}$	0	*	0	$R_T^{s's}$	0	$R_T^{z'z}$
L	R_L	0	R_L^{0y}	0	0	*	0	$R_L^{x'x}$	0	$R_L^{\pi'\pi}$	0	*	0	*	0	*
^{c}TL	${}^{c}R_{TL}^{00}$	0	$^{\circ}R_{TL}^{0y}$	0	0	*	0	${}^{c}R_{TL}^{x'x}$	0	*	0	*	0	$^{c}R_{TL}^{z'x}$	0	*
$^{*}TL$	0	${}^{s}R_{TL}^{0x}$	0	${}^{s}R_{TL}^{0z}$	${}^{s}R_{TL}^{x'0}$	0	${}^{s}R_{TL}^{z'0}$	0	*	0	*	0	*	0	*	0
$^{\circ}TT$	${}^{\circ}R_{TT}^{00}$	0	*	0	0	*	0		0	*	0	*	0	*	0	*
^{s}TT	0	${}^{s}R_{TT}^{0x}$	0	${}^{s}R_{TT}^{0z}$	${}^{s}R_{TT}^{x'0}$	0	${}^{s}R_{TT}^{z'0}$	0		0	*	0	*	0	*	0
$^{c}TL'$	0	$^{c}R_{TL^{\prime}}^{0x}$	0	$^{c}R_{TL^{\prime}}^{0z}$	${}^{c}R_{TL'}^{\alpha'0}$	0	${}^{c}R_{TL'}^{z'0}$	0	8	0	*	0	*	0	*	0
$^{*}TL'$	${}^{*}R^{00}_{TL'}$	0	${}^{s}R^{0y}_{TL'}$	0	0	*	0	$R_{TL'}^{x'x}$	0	*	0	*	0	$R_{TL'}^{x'x}$	0	*
TT'	0	$R_{TT'}^{0x}$	0	$R_{TT'}^{0z}$	$R_{TT'}^{x'0}$	0	$R_{TT^{\prime}}^{z^{\prime}0}$	0	*	0	*	0	*	0	*	0

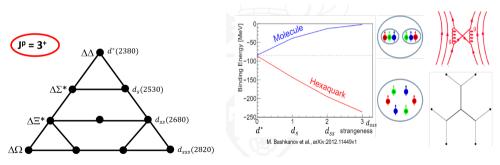


From D.S. Carman (JLab)





- Spectrum of strange baryons is still relatively unknown
- \blacksquare Just a handful of the Ξ and Ω states are considered to be well established
- Quark model approaches, and lattice calculations, suggest a far richer spectrum of S = -2 and -3 baryons



- QCD allows many states beyond the familiar $q\bar{q}$ of mesons and qqq of baryons
- Hexaquarks are a category of objects consisting of either six valence quarks (6q) or three quarks and three antiquarks $(3q3\bar{q})$
- Initial experimental evidence for the d*(2380) came from the WASA at COSY collaboration in 2011
- Prompted follow up work in York at other facilities (A2@MAMI, JLab)

- Looking to find and establish the nature of hexaquark states
- Exploit strangeness to determine possible structure

Jefferson Lab

Introduction

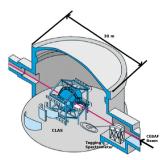
 Jefferson Lab - at the forefront of intermediate energy physics since 1984

Conclusions and Outlook

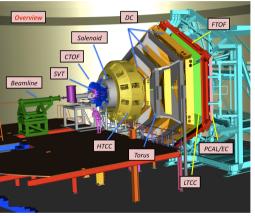
Analysis

- More than 1500 users, from over 230 institutions and 30 countries
- One third of US nuclear physics PhDs come from JLab research

Com Shara	IVERSITY	Introduction	JLab and CLAS12	Analysis	Conclusions and Outlook	
	York	CEBAF				

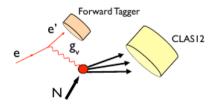


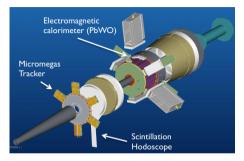
- Continuous Electron Beam Accelerator Facility
- Superconducting RF accelerator
- Anti-parallel double linac, 7/8 of a mile in circumference
- Electron beam energies up to 12 GeV
- Diverse experimental program in four halls
- High-current Electron beams in Halls A and C
- \blacksquare Large acceptance detectors in Halls B and D
- Secondary beams available (real photons) and proposed (K_{Long})



- CEBAF Large Acceptance Spectrometer (1995-2012)
- Multi layered and segmented
- Toroidal magnetic field

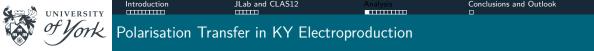
(mark	UNIVERSITY	Introduction	JLab and CLAS12	Analysis	Conclusions and Outlook
	of York	CLAS12			

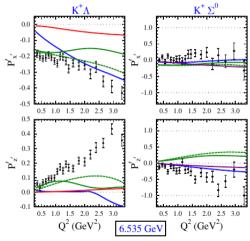



NIM A, 967, 163898 (2020)

- CLAS 12 GeV Upgrade (2012-Present)
- Essentially a new detector, optimised for 12 GeV kinematics
- Forward detector based around a toroidal magnetic field, and a central detector utilising a solenoidal field

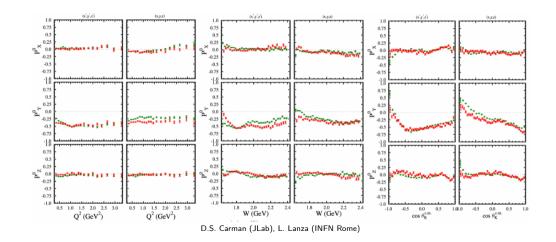
- The Forward Tagger enables spectroscopy experiments with CLAS12 using quasi-real photons up to 10 GeV
- When an electron scatters with very low Q², i.e. at very small angles, quasi-real photons are produced

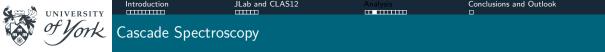


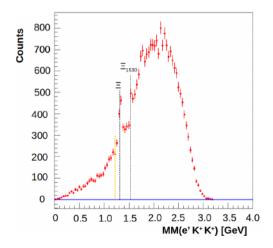

- Low Q² electron detection is a competitive technique for meson spectroscopy
- Photons produced are linearly polarised, with polarisation determinable from electron kinematics

UNIT Of	Versity Run Grou	ps		JLab an			Analysis		ons an	d Outlo	ok
Proposal	Physics	Contact	Rating	Days	PAC	Proposal	Physics	Contact	Rating	Days	РА
E12-06-108	Hard exclusive electro-production of m ⁸ , ŋ	Stoler	В	80	38 J.48	E12-07-104	Neutron magnetic form factor	Gilfoyle	A-	30	32
E12-06-108A	Exclusive N* to KY studies with CLAS12	Carman			42 J:48	E12-07-104A	Quasi-real photoproduction on deuterium	Phelps			47
E12-06-1088	Transition form factor of the η' Meson with CLAS12	Kunkel			44 J:48	E12-09-007(a)	Study of partonic distributions in SIDIS kaon production	Hafidi	A-	110	38
E12-06-112	Proton's quark dynamics in SIDIS pion production	Avakian	A	60	38 J:48	E12-09-008	Boer-Mulders asymmetry in K SIDIS w/H and D targets	Contalbrigo	A-	56	36
E12-06-112A	Semi-inclusive A productiuon in target fragmentation region	Mirazita			42 J:48	E12-09-008A	Hadron production in target fragmentation region	Mrazita			4
E12-06-112B	Colinear nucleon structure at twist-3	Pisano			42 J:48	E12-09-0088	Colinear nucleon structuer at twist-3	Pisano			42
E12-06-119(a)	Deeply Virtual Compton scattering	Sabatie	A	80	30 J:48	E12-11-003	DVCS on neutron target	Niccolai	A	90	38
E12-09-003	Excitation of nucleon resonances at high Q ²	Gothe	B+	40	34 J:48	E12-11-003A	In medium structure functions, SRC, and the EMC effect	Hen			- 4
E12-11-005	Hadron spectroscopy with forward tagger	Battaglieri	A-	119	37 J:48	E12-11-0038	Study of J/g photoproduction from the deuteron	llieva			4
E12-11-005A	Photoproduction of the very strangest baryon	Guo			40 J:48	E12-16-010	A search for Hybrid Baryons in Hall B with CLAS12	D'Angelo	A.	100	44
E12-12-001	Timelike Compton scatt. & J/µ production in e+e-	Nadel-Turonski	A-	120	39 J:48	E12-16-010A	Nucleon Resonances in exclusive KY electroproduction	Carman			44
E12-12-001A	Near threshold J/ photoproduction and study of LHCb pentaguarks	Stepanyan			45 J:48	E12-16-010B	DVCS with CLAS12 at 6.6 and 8.8 GeV	Elouadhiri			44
E12-12-007	Exclusive g meson electroproduction with CLAS12	Stoler, Weiss	B+	60	39 J:48	E12-16-010C	Separation of the ofL and oT contributions to hadron production	Avakian			
											_

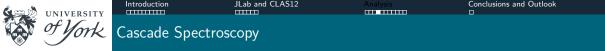
- Proposals with similar experimental conditions collected as *Run Groups*
- The strangeness analyses described mainly use data at 11 GeV beam energy from Run Groups A (*LH*₂ target) and B (*LD*₂ target)
- Also a lower energy run group on LD_2 , Run Group K

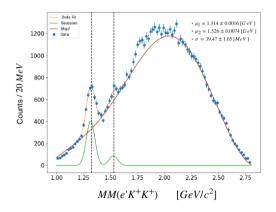


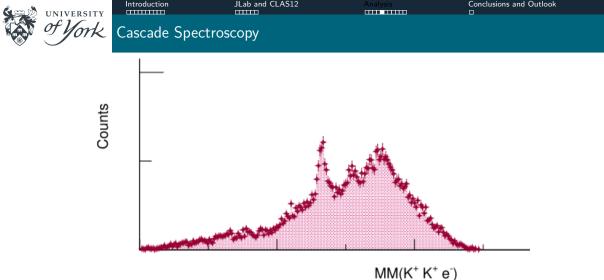

- Beam-recoil polarisation transfer in $K^+\Lambda$ and $K^+\Sigma$ electroproduction
- Sensitivity to higher mass N* and Δ* states
- CLAS12 statistics sufficient for first-ever multi-dimensional analysis for these observables in Q², W and cosθ^{c.m.}
- Data will spur further development of reaction models and enable extraction of electrocoupling amplitudes



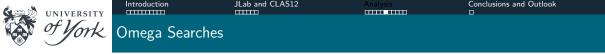
D.S. Carman et al., Phys Rev C 105 (2022)


A		Introduction	JLab and CLAS12	Analysis	Conclusions and Outlook
	UNIVERSITY				
	of Vork	KY Polarisation			
	10110				



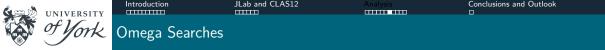


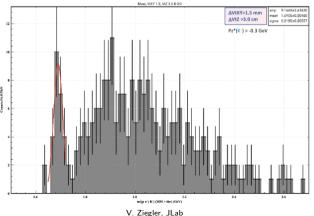
- M. Nicol, York, 2022 PhD
- Survey of eK⁺K⁺ missing mass shows clear Ξ sigmals
- First observation in CLAS12 data



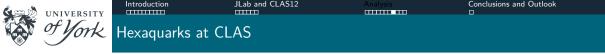

- PhD of J. Carvajal (FIU), defended last week
- More detailed study of the eK⁺K⁺ final state
- Cross section measurement of Ξ⁻ in low and high Q² regions
- Q² evolution will allow exploration of production methods

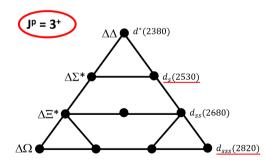
,

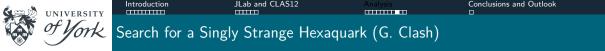

placeholder text, add some comment about Asli's analysis

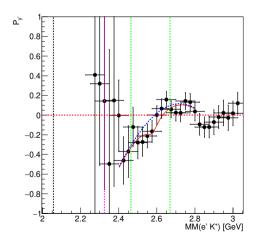


- The Ω⁻ has yet to be seen in electroproduction, CLAS12 would be a first measurement
- With low Q^2 photoproduction, we hope to make first measurements of the Ω^- cross section
- Ω⁻ has no quarks inherited from the target proton, what data tell us about the reaction mechanism?

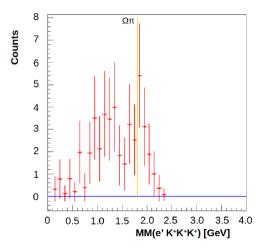

CERN-EX-41769

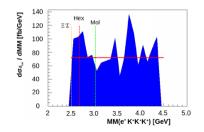

M = 1.6905 GeV


- $p\pi^-K^-$ mass distribution
- Possible Ω^- peak seen
- Background studies ongoing
- Data will also be used to search for excited Ω states

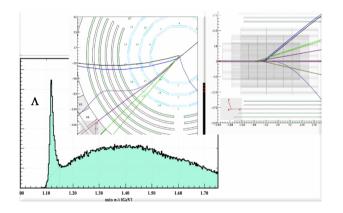


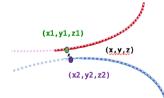
• Two CLAS12 PhD analyses searching for d^* states so far in York:

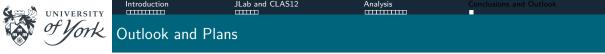

- G. Clash, defended last year, *Search* for a Singly Strange Hexaquark Using Polarization Data From CLAS12
- M. Nicol, defended Autumn 2022, Exploring The Strong Interaction Through Electroproduction of Exotic Particles



- Looking for signs of a hexaquark state in RGB data
- $ed \rightarrow e'K^+d_s^0$
- The d_s^0 decays through Λn
- Final state of $e'K^+p\pi^-n$
- Using polarisation as lens to perform this search
- P_{y'} measurements of the Λ used to establish an upper limit on this state's peak strength




- Also RGB data
- $ed \rightarrow e'K^+K^+K^+d_{sss}$
- "Bump hunt" shows no obvious d_{sss} signal
- Cross section upper limit established



(m)	UNIVERSITY	Introduction	JLab and CLAS12	Analysis	Conclusions and Outlook
	of York	Further Analyses			
* ®					

- Recent developments in detached vertex reconstruction (V. Ziegler, JLab)
- Improve resolution in several channels that rely on hyperon reconstruction

- CLAS12 data is making significant contributions to our understanding of the role of strangeness
- Spectroscopy of Ξ and Ω states will enable models of hyperon production to be more fully explored
- Leveraging polarisation provides an additional lens to study the role of strangeness in resonance production
- Searches for unconventional states, e.g. hybrid baryons and hexaquarks, benefit from the study of strangeness channels
- This is just a flavour of CLAS12 activities in strangeness; so much more in both our ongoing CLAS6 activities, and our exploitation of CLAS12 data