Studies of N* structure from the CLAS meson electroproduction data

V. I. Mokeev^{1,2}, I. G. Aznauryan^{1,3}, and V. D. Burkert¹ for the CLAS Collaboration

 1 Jefferson Lab, 12000 Jefferson Ave, Suite 5, Newport News VA 23606, USA

² Skobeltsyn Institute Nuclear Physics at Moscow State University, 119899 Moscow, Russia ³ Yerevan Physics Institute, 375036 Yerevan, Armenia

The studies of the excited proton state (N^*) structure from the data on exclusive meson electroproduction off protons are of key importance for the exploration of non-perturbative strong interaction which is responsible for the formation of baryons from quarks and gluons [1, 2]. With its nearly complete coverage of the final-state phase space, the CLAS detector at Jefferson Lab has provided the lion's share of the world's meson-electroproduction data for differential cross sections of π^+n , $\pi^0 p$, ηp , $\pi^+\pi^-p$, KY channels and the asymmetries arising from single- and double-polarization observables in $N\pi$ and KY electroproduction. Electrocouplings for most of the N^* states in the mass range of up to 1.8 GeV have been determined from analyses of $N\pi$ electroproduction at photon virtualities (Q^2) up to 5.0 GeV² [1, 3] and from the $\pi^+\pi^-p$ channel [2, 4] at Q^2 up to 1.5 GeV². Consistent results for the electrocouplings of the $P_{11}(1440)$ and $D_{13}(1520)$ excited proton states as obtained from independent analyses of major $N\pi$ and $\pi^+\pi^-p$ electroproduction channels suggest a reliable evaluation of these fundamental quantities. Preliminary results on electrocouplings of several N^* states in the mass range above 1.6 GeV, which decay preferentially to the $N\pi\pi$ final state, have become available from $\pi^+\pi^-p$ electroproduction data for the first time [2].

Physics analyses of these N^* electrocouplings [1, 4] have revealed that the structure of the excited nucleon is formed of an internal core of dressed quarks with an external mesonbaryon cloud. Our N^* -electrocoupling results have substantial impact on the development of the theoretical description of hadron structure starting from the QCD Lagrangian within the framework of Lattice QCD and Dyson-Schwinger Equation approaches. They also provide a testing ground for advanced quark models of the N^* structure [2].

References

- [1] I. G. Aznauryan and V. D. Burkert, Prog. Part. Nucl. Phys. 67, 1 (2012).
- [2] I. G. Aznauryan et al., Studies of Nucleon Resonance Structure in Exclusive Meson Electroproduction, JLAB-PHY-12-1627, SLAC-PUB-15259
- [3] I. G. Aznauryan et al., CLAS Collaboration, Phys. Rev. C 80, 055203 (2009).
- [4] V. I. Mokeev et al., CLAS Collaboration, Phys. Rev C86, 035203 (2012).