Studies of $\pi^+\pi^- p$ electroproduction at W from 1.4 to 1.8 GeV and Q^2 from 0.4 to 1.1 GeV² with CLAS

G. V. Fedotov^{1,3}, R. W. Gothe¹ and V. I. Mokeev^{2,3} for the CLAS Collaboration

¹ University of South Carolina, Columbia, South Carolina 29208, USA
² Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
³ Skobeltsyn Institute Nuclear Physics at Moscow State University, Moscow 119899, Russia

ABSTRACT

The first results on studies of the $ep \rightarrow e'p'\pi^+\pi^-$ reaction at W from 1.4 to 1.8 GeV and Q^2 from 0.4 to 1.1 GeV² with the CLAS detector will be presented. Nine one-fold differential cross sections will become available in this kinematical area and within of photon virtuality (Q^2) bins of smallest sizes ever achieved in studies of this exclusive channel (50 MeV²). Analysis of this data within a reaction model [1, 2] will improve considerably the available Q^2 evolution of the $\gamma_v NN^*$ electrocouplings of excited proton states in the mass range up to 1.8 GeV. Furthermore, this information is of particular importance for the studies of $3/2^+(1720)$ candidate state [3].

^[1] V.I. Mokeev *et al.* (CLAS Collaboration), "Experimental Study of the $P_{11}(1440)$ and $D_{13}(1520)$ resonances from CLAS data on $ep \rightarrow e'\pi^+\pi^-p'$," Phys.Rev. C86, 035203 (2012), arXiv:1205.3948 [nucl-ex]

^[2] Viktor I. Mokeev, Volker D. Burkert, Tsung-Shung H. Lee, Latifa Elouadrhiri, Gleb V. Fedotov, *et al.*, "Model Analysis of the $p\pi^+\pi^-$ Electroproduction Reaction on the Proton," Phys.Rev. **C80**, 045212 (2009), arXiv:0809.4158 [hep-ph]

^[3] M. Ripani *et al.* (CLAS Collaboration), "Measurement of $ep \rightarrow e'p\pi^+\pi^-$ and baryon resonance analysis," Phys.Rev.Lett. **91**, 022002 (2003), arXiv:hep-ex/0210054 [hep-ex]