Exclusive π^0 electroproduction in the resonance region.

N. Markov, K. Joo University of Connecticut M. Ungaro Jefferson Lab L.C. Smith University Of Virginia V. Mokeev Jefferson Lab

June 28, 2018

Abstract

The exclusive electroproduction process $ep \rightarrow e'p'\pi^0$ was measured in the range of the photon virtuality $Q^2 = 0.4 - 1.0 \text{ GeV}^2$, and the invariant mass range of the $p\pi^0$ system of W = 1.1 - 1.8 GeV. For the first time, these kinematics are covered in exclusive π^0 electroproduction off the protons with nearly complete angular coverage in the $p\pi^0$ center of mass system with extremely high statistics. Cross section and beam spin asymmetry were measured and structure functions $\sigma_T + \epsilon \sigma_L$, σ_{TT} , σ_{LT} and σ'_{LT} were extracted via the fitting of the ϕ^* dependance. Comparison between the experimental results on exclusive structure functions $\sigma_T + \epsilon \sigma_L$, σ_{TT} , σ_{LT} and evaluations within the JLAB/YerPHY unitary model revealed the data sensitivity to the variations of the electroexcitation amplitudes for the nucleon resonances $N(1685)5/2^+$, $\Delta(1620)1/2^-$, and $\Delta(1700)3/2^-$. Combined studies of $\pi^0 p$, $\pi^+ n$ and $\pi^+ \pi^- p$ electroproduction off protons data from CLAS at W > 1.6 GeV will provide the first results on the high lying N^{*} and Δ^* electrocouplings at $Q^2 < 1.0 \ GeV^2$ for all excited nucleons with substantial decays to the $N\pi$ final states.