Elastic scattering of Lambda baryons with protons is important to know, in part because these reactions might take place in the center of a neutron stars. Current ΛN elastic scattering data comes primarily from bubble chamber experiments. The richness of Λ production in modern day accelerators has thus never been realized. ΛN data is very limited compared to other elastic scattering processes, such as NN, KN and πN . Data was mined from existing experiments from the g12 run of the CLAS detector in Hall B of Jefferson Lab. A high luminosity photon beam incident on a 40 cm liquid hydrogen target allows for a Λ beam to be created inside the target. We look at the reaction $\gamma p \to K^+\Lambda$ to generate the Λ beam. The created Λ then proceeded to scatter elastically with a second proton in the target. The $K^+\Lambda$ cross section is well known, which allows us to determine the flux of the Λ beam. From this, preliminary results for the ΛN cross section will be presented along with new data for its angular distribution.