Louise Clark

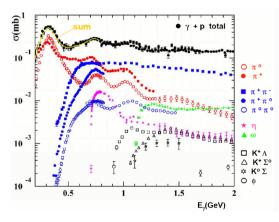
Analysis of $\mathcal{K}^0\Sigma^+$ photoproduction off the proton using CLAS at Jefferson Laboratory

Analysis of $K^0\Sigma^+$ photoproduction off the proton using CLAS at Jefferson Laboratory

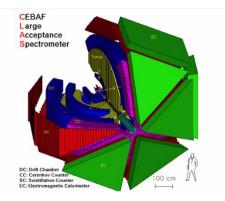
Louise Clark for the CLAS collaboration

University of Glasgow

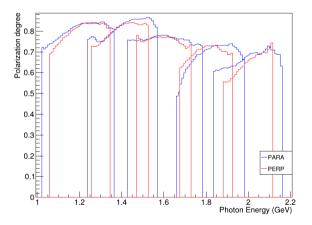
29 July 2019



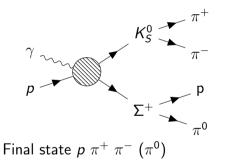
Overview


- Why study this reaction?
- What is the experiment?
- Solution How do we perform particle ID and signal / background separation?
- What can we measure?
- I How do we extract the results?

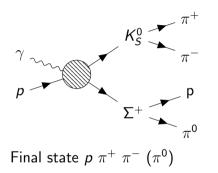
Why study this reaction?


- Goal: understanding the baryon excitation spectrum
- Resonances are predicted but many are not yet measured
- Models / Partial Wave Analyses require further constraints beyond cross-section measurements
- Data for the K⁰Σ⁺ channel is limited this study will be a first measurement of 3 observables

The experiment


- CLAS at Thomas Jefferson National Accelerator Facility
- 4.5 GeV electron beam
- Linearly polarised photon beam produced from diamond radiator
 - Photon energy 1.1 2.1 GeV
 - Centre-of-mass energy 1.7 2.2 GeV
- Liquid hydrogen target

Polarised photon beam


- Mean polarization degree approx 0.7
- Systematic error 2-6%

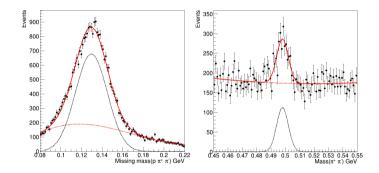
Reaction channel

 $\Sigma^+ \rightarrow p\pi^0$ Branching fraction=51.6% $\alpha = -0.980$

Particle Identification

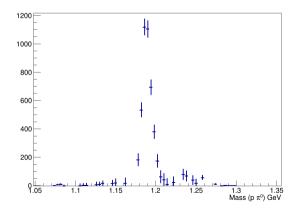
Particle ID cuts

3 charged particles, 0, 1 or 2 neutral particles in event Mass and charge of particles compatible


with $p \pi^+ \pi^-$

Reaction vertex contained within the target

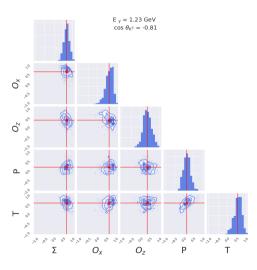
Tagged photon identified with absolute time difference $< 1 \mbox{ ns}$


$$E_{setting} - 200 MeV < E_{\gamma} < E_{setting}$$

Reaction Channel Identification

- Use of sPlots technique to separate signal and background
- Model π^0 and K^0 mass as Gaussian peak on polynomial background

Signal/Background extraction


- Mass of reconstructed Σ^+ with signal weights applied
- PDF mass of $\Sigma^+ = 1189 \; \text{MeV}$

Angular distribution dependance on polarisation observables

$$\begin{split} \frac{d\sigma}{d\Omega} &\equiv \sigma \left(\phi, \cos \theta_x, \cos \theta_y, \cos \theta_z \right) = \sigma_0 \left\{ 1 - P^{\gamma} \Sigma \cos 2\phi \right. \\ &\quad + \alpha \cos \theta_x P^{\gamma} O_x \sin 2\phi \\ &\quad + \alpha \cos \theta_y P - \alpha \cos \theta_y P^{\gamma} T \cos 2\phi \\ &\quad + \alpha \cos \theta_z P^{\gamma} O_z \sin 2\phi \right\}, \end{split}$$

- $\phi = {\rm angle} ~{\rm of}$ reaction plane wrt polarisation plane
- $\cos \theta_x$, $\cos \theta_y$, $\cos \theta_z$ = direction cosines of proton in the rest frame of the hyperon
 - y-axis normal to reaction plan
 - z-axis parallel to beam in rest frame of hyperon
- Polarisation observables: Σ , P, T, O_x , O_z

Preliminary results

- Likelihood sampling using Markov Chain Monte Carlo
- Obtain posterior and correlation for each of the 5 observables

Preliminary results

OUTLIER More than 3/2 $E_{v} = 1.23 \text{ GeV} \cos \theta_{K^{0}} = -0.81$ times of upper guartile 1.0 MAXIMUM Greatest value. excluding outliers UPPER QUARTILE 25% of 0.5 data greater than this value MEDIAN 50% of data is greater than this value: 0.0 middle of dataset -LOWER QUARTILE 25% of -0.5data less than this value MINIMUM Least value. excluding outliers -1.0Σ O_x Ρ т O_7 OUTLIER Less than 3/2 times of lower quartile

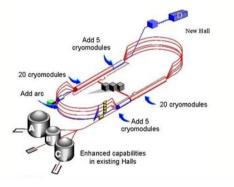
Preliminary results

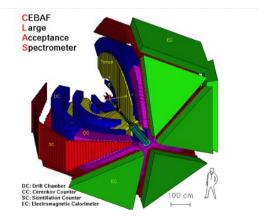
E $_{\gamma}$ = 1.23 GeV cos θ_{K^0} = -0.81

- Example results for one bin
- Measurements for 21 kinematic bins in E_γ and cos(θ_{K⁰}) will be extracted
- Finalised results will provide new data for theorists to implement in their fits

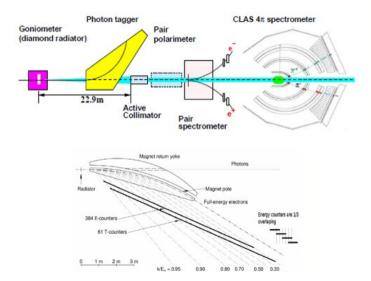
Summary

- The study of baryon resonances is an important tool for investigating QCD in the non-perturbative region
- Phenomenological models explaining the behaviour observed in hadronic processes are constrained by the "polarization observables" associated with these resonances
- The preliminary results shown are a first measurement for three of the five observables extracted and will add to the world-data available for constraining resonance models of the proton

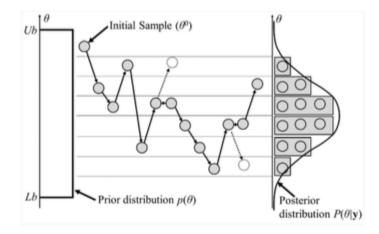

Thanks for your attention


Louise Clark University of Glasgow

Supplementary material


Louise Clark University of Glasgow

CLAS detector at JLab



CLAS detector at JLab

Markov Chain Monte Carlo

