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Motivation Baryon Spectroscopy

Baryon Spectroscopy

@ Baryon Spectroscopy is the study of excited nucleon states.

proton neutron

Excitation

w0 15/2* v+ o

o Different quark models have different degrees of freedom, causing
different predictions of resonance states & parameters of resonances

(mass, width, etc).
o




Motivation ~ Thomas Jefferson National Accelerator Facility (JLab)

JLab Continuous e~ Beam Accelerator (6 Gev, before upgrade to 12 GeV)

North Linac
(400 MeV, 20 cryomodules)

South Linac
(400 MeV, 20 cryomodules)

Extraction
— B clement

Time-ofFlight Scinilators i

Electron Beam Energy (GeV) | Photon Beam Polarization | # of Events (M) [ Observable

1.645 Circular ~1000 E
2.478 Circular ~2000 E
2.751 Linear ~1000 G
3.538 Linear ~2000 G
4.599 Linear ~3000 G

Hall B g9a/FROST run from 12/2007 ~ 2/2008



Motivation ~ CLAS g9a/FROST Experiment

CLAS g9 /FROST Experiment

Circularly polarized
tagged photon beam

/

Longitudinally polarized

’

. ’ profon target
P reconstructed in jo P (Frozen-Spin Butanol Target)
the CLAS detector

o Bremsstrahlung radiation (gold foil or thin diamond) — real polarized photon

o Dynamic Nulcear Polarization — polarized targets

o g9a/FROST - Circularly polarized photons with E, a2 0.4 — 2.4 GeV and
longitudinally polarized proton target

o 8 observables at fixed (E,,#) — 4 helicity amplitudes — Resonances (PWA)

| UPr and UPg | UPtand Pr | Prand UPg | Prand Pg

UPg Z% P T Tx’7 Tz’7 Ly, Ly
LPg - O, (=T), 0y | H,(—P),—G
CPs —C..—-C, F._E

UP, P, LP, CP, B, T, R denote unpolarized, polarized, linearly polarized, circularly polarized, beam, target, and recoil, respectively.
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Motivation Helicity Asymmetry E

Helicity Asymmetry E

o Double polarization observable E is the helicity asymmetry of the

cross section:
03/2 — 01/2 1
E = 32712 or — & — are total helicty states
03/2 + 01/2 2 2

o & of polarized beam & polarized target for E (theo. & exp.):

do dao do B N%,

NIw

3
2

NI

o E is measured via:

D¢ = dilution factor

£ 1 1 N%—N% P, = Polarization of target in 2
N [Df} [PZPJ N%"’N% P, = Polarization of beam
N%,% = # of events
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Motivation Butanol & Carbon Targets

Butanol & Carbon Targets

(¢]

e}

e}

Butanol

CLAS center

|
I
I
| Free-Proton
|
I

i
Polyethylene (CH2)

Carbon

Butanol target (C4HoOH) consists of polarized hydrogen

I
Butanol Carbon (C)
Evenis 528cmlong 1.2 mm thick 3.45 mm thick
Beam -
I |
i i
Ocm 6.15cm 15.95cm

(free-nucleons) & unpolarized carbon and oxygen (bound-nucleons)

Fermi motion of bound-nucleons — negative missing mass M_o

Carbon target consists of unpolarized bound-nucleon

Scale carbon target events & subtract from butanol target events
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Motivation ML Objectives: Target Selection & Ice on Carbon

ML Objectives: Target Selection & lIce on Carbon

o Target Selection

- Events with z-vertex € [2, 5]cm,
uncertain whether + hit Butanol or
Carbon

hit position y (cm)

o lIce on Carbon

- Carbon events (bound-nucleon)
expected to have broader mZ peak
due to Fermi motion.

nts (x10°)

Cou

- Sharp peak (free-nucleon) observed
in the Carbon target region.

m2, (Gev?)
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Event Selection  Event Selection

Event Selections

(a) Proton selection (b) Radial vertex selection (C) Z-vertex selection

Sector 3

ouats (x10%)

fving s s (GEVICH]

" Paddic#

(d) Fiducial selection (e) TOF paddles (f) M)z((E,Y, mp; s Epg s Py, Ppy)

43



ML: Target Classification

Neural Network Training Flowchart

Loss fn

Loss score

Optimizer

Weight update
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ML: Target Classification

Training Data Selection

100

0

2.5 0.0 25 50 15 10.0 12.5 15.0 17.5
Z-Vertex Position (cm)

o Randomly select events with z-vertex position in close proximity of each targets
- Butanol € [-3.3, 3.3]cm
- Carbon € [5.5, 7.0]cm
- Polythene € [15.5, 17.0]cm
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Result on Target Selection

F Butanol 15
[ Carbon

Counts (x10%)
S
Counts (x10%)

=

o
0090507 0.6 050403 -02 0.1 00 01 02 03 04 05 06 07 05 09

6 8 10
m2 (Gev?)

-2

o 2 4
Z-Vertex Position (cm)

o Classified Carbon events from Butanol in z-vertex € [2.5, 4.5]cm
o Some Carbon events in Polythene regions & Polythene events in Butanol region.

12/43



ML: Hydrogen Contamination on Carbon

Training Data for Hydrogen Contamination

- ice train
W carbon

Peak 0031
o 0278

025

35 0 02 050 075 100
my, (GeV?)

o Tight cut on the mf,o peak on
g9a-Carbon data (or MC sim) as ice
- Bound-nucleon (fermi p)
— broader m? distribution
- Sharper peaks from free-nucleon
(ice) & Broad background from
bound-nucleon (carbon)

(e]

Counts

“m2, (Gev?)

Counts

2~ vertex (cm)

Randomly select events within three

criterion:

- Classified as carbon events in
previous target classification
distribution

- Missing mass squared ¢ [—0, 0]

- Z-vertex position € [5.5,6.5]

/43



ML: Hydrogen Contamination on Carbon

Final Result of ML: ICE vs CARBON

m? (Gev?) m2 (Gev?)

m2, (Gev?)

Carbon + Ice

Vertex z (cm)

Figure 3: Missing-mass distribution as a function of the MVRTz &
vertex of the m+. The shape of the missing-mass distribution
strongly changes with z. Event selection: py > 0.2 GeV/c and 8, >
20°.

* z-vertex (em)
[Result from USC for vp — 71 n]

o Classified ice events from Carbon target in z-vertex € [6.0, 7.5]cm
o It is likely that ice was formed in 20 K heat shield in between Carbon and
Polythene targets.

43



Helicity Asymmetry E

N .
Scale Factor (—2**) & Dilution Factor

rrrrrrrrrrrrrrrrrrr

§-F= == = == == = MEV € [0.44,0570] [GeV] ’ ==mee
% A E WEY € [0.57,0.821] [GeV] sl

O Sector dependence only evident in low Energy: i
E, ~[0,0.45]GeV JEESERRRC EoE et ona

=

o As E, 1, more interactions in butanol target oSaSiiiiiasicy

Max bin = 800
than carbon I
_ free H in butanol _ 10 ~ Sw
o Df|low lim ~  total nucleon in butanol — 74 T 0.135 R e

_ Ner o q S(E)XNE(Ey . Ocm)
© Df(Eﬂf’ecm) = Nt 1- NB, tot (E~ ,0cm)
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Helicity Asymmetry E
Preliminary: Helicity Asymmetry E

E,€10.40,0.45] £, €10.60,0.65] £, €[1.00,1.05] £, €[1.10,1.15]
— s ol — sap

0 00 o 0 L0 w0 05 W 00 o 0 1o 0 s 10
c0S8em 0B €OSBem 0SBerm
Ey€[1.20,1.25] N Ey€[1.30,1.35] Ey€[1.40,1.45] EyE[1.55,1.60]

— sam — snp — s — wn
b % cmELsa I 5 coEsa 10 g s cmELsa | s cBELsA

N3 —Ny

o E= |4+ 1 22
Dr | |PoPr | | N3N,

2 2

o Result of ~ 30% of JLab CLAS g9a experiment data
o Measured E comparison to SAID Partial Wave Analysis predictions
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Next Steps

Next Steps

o}

Process all g9a data for full statistics

o

Quantify uncertainties in neural network training
- Bayesian Neural Network - probability distribution to weights and
biases while training
- Compute purity of the training data used for uncertainty.

o

Energy loss reconstruction

e}

Systematic Error studies

e}

Measured E into SAID database — new pole positions for resonances

Acknowledgements
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Next Steps Constituent Quark Models and LQCD

Backup: Constituent Quark Models & LQCD Predictions
of Non-Strange Baryon Resonances

3000 4 ————

= F = = 20 N*
= i = EQI - 1
| - = [ - 1
2500 = [F = = [~ 18 [N | :
= = = = | — |- , @
== E |5 — - E’:% - =
- _ B =B 16} &= | = = =
Sl | —= | = —
% 2000 e — ool o — - ==
2 = Ewl= o 14fe= !
i |l £ f=— =
== E 12 1 -_—
[
1500 — [— | e
- — 1
10 |
I
I
08f — !
1000 Lo H
sm || [12+ 372+ [572+ [ 72+ || 072+ [t 13724 [ 172- | [ 302- | 572 [ 72- | [ or2- |[ 11727 [1372- 06 1+ 3+ 5+ 1+1 1- 3- 5- 1
Lova||| B || Bs | Fis || Fig || Huo ||Hy i Kiss|| Sut || Dia || Dis || Gra || oo || Tiwa | Tiis 2 2 2 213 2 2 2
Constituent Quark Model Lattice QCD

o Constituent Quark Models predicted states: 64 N* & 22 A*
o Experimentally confirmed state: 26 N* & 22 A* 10

43



Next Steps Polarized Photon Beam

Backup: Hall B Photon Tagger

@ Bremsstrahlung radiation due to slowing of electrons by EM field of
radiator (gold foil or thinyo diamond)

@ Determine incoming photon energy of 55 — 7°%p by E, = Ey— E.
@ g9a/FROST - circularly polarized photons with E, ~ 0.4 ~ 2.4 GeV
o Tagger was built by the GWU, CUA, & ASU nuclear physics group

Photons.

S
\Ramam
Focal Plane,
384 Front

(> energy)

6Lbacking
counters

(> timing) N
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Next Steps Polarized Photon Beam

Backup: Circularly Polarized Photon Beam

Linearly Bremsstrahlung Circularly

Polarized ‘ Polarized

Electron Beam Photon Beam

T T T T T T T T T o

@ Polarization transfer: I A
ool B R

L iy | J

0.8 /{/:;;’y -

4—X _ X2 % 07 Cn;;gplze[n: screening: _|

P()=Ple) 12 s

4 — 4x 4 3x 8 ool 2

g 05 —

k photon energy oal- .

Eo  incident electron energy 0sl- .
H. Olsen and L.C. Maximon, Phys. Rev. 114, 887 (1959) 02 o.‘a ‘ 0‘4 I 0‘_5 ‘ 0!5 I 0!7 I o?s I Q_‘g o

KE, 21/43



Next Steps Frozen Spin Target

Backup: Frozen Spin Target

The FroST target and its components: g I S

A:Primary heat exchanger g e penn _~—Take Beam

B:1K heat shield 5 V\“ —
C:Holding coil M~

D: 20 K heat shield Days

E: Outer vacuum can (Rohacell extension) B A

F: CH2 target

G: Carbon target

H: Butanol target

J: Target insert

K: Mixing chamber

L: Microwave waveguide
M:Kapton coldseal

Performance Specs:
Base Temp: 28 mK w/o beam, 30 mK with F
Cooling Power: 800 pyW @ 50 mK, 10 mW @ 100 mK, and 60 mW @ 300 mK
Polarization: +82%, -90%
1/e Relaxation Time: 2800 hours (+Pol), 1600 hours (-Pol)

Roughly 1% polarization loss per day.

C. Keith et al. Nucl Instrum Meth A 684, 27 (2012)
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Next Steps Frozen Spin Target

Backup: CLAS g9a/FROST Data

70
,.\1_.TIY—..T,7..-,T‘,..=
'.‘é ® y+p total ] Po(1232)
E 8
[," ﬁ‘wmu:hﬂ . ”h__‘.{_ 60 Dy5(1520)
1
3 2 P e
B 3 i ] ) 50
LY b oo
g . . oo
;!ﬂéw ; 9. = 40
3 e T T | 2l <
Wil i : : i RLLTITE ISP I = F)5(1680)
: : :
a8 ER=R SN
- . 5 s A KExe L 30
o 1 5 ¥ e okex
104 ] i v @ w0 g o5 o ¢ g 09
0.5 1 1.5 2
E/(GeV) 20
@ Select only 75 — 7%p events
10
e 7p — 7%p resonance channels
© Appropriate enegy bins - include 9700 400 500 00 1000 1200 1400
all resonances (< 1500 MeV) E. (MeV)
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Next Steps Frozen Spin Target

79 photoproduction

Circularly polarized 0
tagged photon beam T
)
p

.
v

,7  Longitudinally polarized
proton target

,
N 7’
P reconstructed in 4 P (Frozen-Spin Butanol Target)

the CLAS detector

e From T Matrix to Helicity Amplitudes of 75 — 7°p:

(@ ma| Tlkme ) =[(ma[J|me)|-ex(k) W Hi(0) = (Mol I A1)

@ 4 Complex Helicity Amplitudes:

o () = (A
H3(6) = <+2‘J ‘—;> Ha(6) = <+;‘ J ‘_;>



Next Steps Frozen Spin Target

Backup: Complete Experiment - 8 Polarization Observables

@ Polarizable: incoming photons, target & recoiling nucleons

@ 8 well chosen observables at fixed E, & angle — 4 helicity amplitudes

| UPt and UPg | UPt and Pg | Pr and UPg | Pt and Pg
UPg g% P T TX/, Tz/, LX/, L,
LPg -¥ Ov,(-T),0, | H,(—P),-G
CPs —Cv,—Cy F,—E

UP, P, LP, CP, B, T, R denote unpolarized, polarized, linearly polarized, circularly polarized, beam, target, and recoil, respectively.

@ Helicity asymmetry E related to other observables via Fierz identities:

FG—EH=P—-XT

E?+F2+G*+H*=1+P* 52— T2
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Next Steps Frozen Spin Target

Overtraining Limits

@ Qvertraining:

Excess training with only specific training data

!

Classification succeeds on training data, but fails on actual data

@ Must determine adequate classifying variables & size of training data

@ Rule of thumb for Decision Tree algorithm:

Le(h) + \/(n +1) logy(d + 3) + log(2/9)

Lp(h) <
2m
Lp(h) = Error of classification on actual data set Ls(h) = Error of classification on a training data set
h = Error of classification on a training data set d = Number of variables

& = Confidence level of randomly selected training data points m = Size of training data sets

n = Number of nodes e n & d inversely proportional to Ls

26 /43



Next Steps Particle Identification

Proton Selection: Ap Selection

AB = /Bmeasured - 5p = ﬂmeasured - \/migiw
P

Select events with only 1 positive outgoing particle (for ¥p — 79p)

Measure p (via curvature) and (3 (via SC & TOF) of positive particles
Select events with A =~ 0

27/43



Next Steps Particle Identification

Result on Hydrogen Contamination of Carbon Target

Z-Vertex Positon (cm) m (Gev?)

o Classified ice events from Carbon target in z-vertex € [6.0, 7.5]cm

o It is likely that ice was formed in 20 K heat shield in between Carbon and
Polythene targets.
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G Pticl \dertifcation
Final Result Target Classification

s butanol
e polythene

W carbon
- ice
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Next Steps  g9a/FROST Target setup

g9a/FROST Target setup

B A
FROST Zero Heat Load Target Insert

Compression nut

PCTFE Target Cup Kapton sealing gasket
for Mixing Chamber
(5 g butanol)

Aluminum beam window
Side view of FROST target with beam entering from the right. (A) Primary head
exchanger, (B) 1 K heat shield, (C) Holding coil, (D) 20 K heat shild,(E) Outer vac- et (80 ) i attached o o s crwes! 1nlo M.C. (1040 v load
wum can ,[(F) Polyethylene target,(G) Carbon target,(H) Butanol target |(J) Target look. Wronch is removod after gasket is compressed.
insert, (K) Mixing chamber, (L) Microwave waveguide, and (M)

Kapton cold seal.

CLAS center
i i
Butanol Carbon (C) Polyethylene (CH2)
5.28 cm long 1.22 mm thick 3.45:mm thick

Ocm 6.15cm 15.95cm
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Next Steps Polarized Photon Beam

JLab Hall B Photon Tagger

@ Bremsstrahlung radiation due to slowing of electrons by EM field of
radiator (gold foil or thinyo diamond)

@ Determine incoming photon energy of 55 — 7°%p by E, = Ey— E.
@ g9a/FROST - circularly polarized photons with E, ~ 0.4 ~ 2.4 GeV
o Tagger was built by the GWU, CUA, & ASU nuclear physics group

Photons.

S
\Ramam
Focal Plane,
384 Front

(> energy)

6Lbacking
counters

(> timing) N
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Next Steps CLAS Detector

CEBAF Large Acceptance Spectrometer

Large-angle Calorimeter
I Electromagnetic Calorimeter

Cerenkov

Counters

Superconducting
Toroidal Magnet

Drift Chambers
3 Regions

\

Electromagnetic
Shower Counters.

Time-of-Flight Scintillators

¢
Mini-torus Coils

Main Torus Coils—
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Next Steps CLAS Detector

Evidence of Hydrogen Contamination on Carbon

10°
T T
500
2
E N 500
8 5
%
E
0 i
0.8 1.0
Missing Mass (GeV) —0

6 7 8

Figure 2: Missing-mass distribution for the m+n channel from & Vertex z (cm)

FROST g9a data. W = 1.25 - 1.50 GeV, integrated over all
angles. Events in the red histogram are from the butanol Figure 3: Missing-mass distribution as a function of the MVRT z &7
target and events in the blue histogram are from the 12C vertex of the m+. The shape of the missing-mass distribution
target with z-vertex larger 5.0 cm and smaller than 7.5 cm. The strongly changes with z. Event selection: p; > 0.2 GeV/c and 8;, >
blue histogram is scaled by 5.26. The FROST distribution from 20°.

the 12C target region show a narrow peak at the mass of

then neutron.

O Sharp peak at downstream end of Carbon foil — ice built up while cooling the target
o Ice formed on the right side of Carbon target: Z-vertex € [6, 7]cm
o Plots from [Steffen Strauch]’'s Analysis page of FROST Wikipage
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Next Steps Particle Identification

Proton Selection: GPID bank

050 075 100 125 150 050 075 100 125 150
Momentum (GeV/c) Momentum (GeV/c)

(]

AB = /Bmeasured - ﬁp = Bmeasured - \/migiw
P

Select events with only 1 positive outgoing particle (for ¥p — 79p)

Measure p (via curvature) and (3 (via SC & TOF) of positive particles
Select events with A =~ 0
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Next Steps Photon Beam Selection

Photon Beam Selection

At =ty —tyy
= time when p was at event vertex

— time when ~ was at event vertex

Timslng Dlﬂ:rgl;cle ;r;;)s

@ Readings from SC, DC & TOF system to determine t,, & t,,

@ JLab e~ beam sent in bunches separated by 2 ns

@ Neglect events caused by photons emitted from different e~ bunches

@ Select out events with At ~ 0
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Next Steps Radial Vertex Selection

Radial Vertex Selection - Target Cup

L5 &0
_ flilen oo
10 s00

Compression nut ——

w0

g0
&2

= PCTFE Target Cup Kapton sealing gasket
8 oo w0 15 mm x 50 mm ; for Mixing Chamber
B (5 g butanol) 4

] \

g, \

E s 0

Aluminum beam window

-10

Insert (80 K) is attached to wrench and screwed into M.C. (10 K) via load
lock. Wrench is removed after gasket is compressed.

135 05 00 05
hit position x (cm)

o Removed events outside of target cup (d = 1.5cm)
o He-Bath outer region
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Next Steps  Inefficient TOF paddles

Inefficient Time-Of-Flight system paddles

Paddler o Padled  Paddlex

\\\\\\

s f
. .
L
o L
.
.
o A
!
% 1 50 % 0 £ fo
"
Sector 6 " 0
............. I
oo ot SN "l "
s T || i “
o g oo ik
, T S P
Pt P Pt

o Events from inefficient scintillator paddles removed
o Sector2 - 25, Sector3 - 23, 35, Sector4 - 23 and etc
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Next Steps Fiducial Selection

Fiducial Selection - Inactive CLAS regions

1000

800

B |

600

did

¢ (deg)

400

0
140

B . o "
o Inactive regions of detector - coii 2512 torus magnet, beamline holes, etc
0 0<7, -180 < ¢ < —175, —125 < ¢ < —115, —65 < ¢ < —5b

-5 < ¢ <5 55 < <65 115 < ¢ < 125, 175 < ¢ < 180
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Next Steps Neural Network Model Setup

Neural Network Model Setup

o Two fully-connected (dense) neural layers

1 Dense layer with 15 nodes - 15 parameters:

= E B, B Bm Ey, m, m%, pid.|pl, px, py, Pz, x, v, and 2.
- Too many parameters + insufficient train data — Too specific training — Overfitting (fail)

2 Dense layer with 3 nodes - one for each target

— For each event, this layer returns an array of 3 probability scores (butanol, carbon, or polythene) that sum to 1
o Optimizer used: AdamOptimizer
o Loss function used - Sparse categorical cross entropy:

- Hy(y) = —>_;yilog(yi) .where y; is the predicted target
and y/ is the true target

o Python and Tensorflow
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Next Steps

Classifying Parameters

Choosing Classifying Parameters

z
scPdHt
TRIGBITS
runNum
p_abs
beta_diff
mmsq_pi0
theta

phi

sector
tof_pad

w

beta_cm
gamma_cm
pz_cm
p_cm_abs
theta_cm
cthe_cm
tar_Pol
tar_Pol_sign
bm_helicity
pol_pho
T_pred

04

08

0 Choose 10 ~ 15 adequately correlated
parameters to avoid overfitting and
underfitting

o Higher correlation — lesser contribution
to classification

o Lower correlation — biased training —
overfitting
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Next Steps  Classifying Parameters

Training Data for Carbon from g9b experiment

g9a Carbon g9b Carbon
me carbon 200 e g9b_carbon
500 o =0.1587 GeV 175 o =0.5012 GeV
400
300

200

100

—q 00 -075 -050 -0.25 0.00 025 0.50 0.75 _100 »q 00 -075 -050 -025 0.00
m2, (Gev?) mz, (GeV?)

0 g9b-carbon mf,o peak broader than g9a/Carbon — No ice on g9b

o During g9b, Carbon target was moved further in downstream.

o Shifted Z-vertex of g9b-Carbon events to use as training events for g9a [F. Klein].
o Failed (under investigation)— Different training data for carbon used
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Next Steps  Classifying Parameters

Neural Network Training Flowchart: ICE vs CARBON

.—> Loss fn

Loss score

Optimizer

Weight update
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Dilution

Factor

£,€10.35,0.40]

Next Steps

E£/€10.55,0.60]

Classifying Parameters

E£/€10.75,0.80] £,€10.95,1.00]

B o D Bm oWt "
0 o 0s o 0
06 oBern 0B CosBern
B E,€11.15,1.20] » E/E01.35,1.40] " E,€01.45,1.50] . E,E€01.55,1.60]
s o6 o6 s
Dy D D, %
0 o4 0s 0
o 02 . o
w o0 ﬂu o
€056 0SBern c0Bem c0sBer

o Dr(E,

°© Df‘low lim —

’ ecm) -

N,

Np,tot—Np,b ~ 71— s(Ey)

><’\/C(Ewecm)

NB,tot
free H in butanol

NB,tot

NB,tot(E'y 76'cm)
__ 10

total nucleon in butanol — 74

= 0.135

43
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