Exclusive n Electroproduction Beam Spin Asymmetry Measurements using CLAS12 at Jefferson Lab

IZZY ILLARI APS DNP Oct 7-10 2024

I. Illari

Unique Opportunity of Nŋ Final States

- Key Idea: N η final states provide a cleaner probe of nucleon resonances compared to N π final states
- η is isospin singlet (I = 0) \rightarrow "isospin filter" (N η final states access only I = 1/2 nucleon resonances)
- Reduces # of contributing resonances → cleaner extraction of resonance properties
- Complements $N\pi$ studies in a coupled-channel approach

	Particle	J^P	Overall	$N\gamma$	$N\pi$	$N\eta$	
	N(1440)	$1/2^{+}$	****	****	****		
	N(1520)	$3/2^{-}$	****	****	****	****	
	N(1535)	$1/2^{-}$	****	****	****	****	
	N(1650)	$1/2^{-}$	****	****	****	****	
	N(1675)	$5/2^{-}$	****	****	****	*	
	N(1680)	$5/2^{+}$	****	****	****	*	
	N(1700)	$3/2^{-}$	***	**	***	*	
	N(1710)	$1/2^{+}$	****	****	****	***	
	N(1720)	$3/2^{+}$	****	****	****	*	
	N(1860)	$5/2^{+}$	**	*	**	*	
	N(1875)	$3/2^{-}$	***	**	**	*	
	N(1880)	$1/2^{+}$	***	**	*	*	
	N(1895)	$1/2^{-}$	****	****	*	****	
	**** Existence is certain.						
		***	Existence is very likely.				
_		**	Evidence of existence is fair.				
D	NP	*	Evidence of existence is poor. I. Illar				

Particle	J^p	Fraction Γ_i/Γ for Decay Modes		
		$N\pi$	$N\eta$	
N(1440)	$1/2^+$	55-75 %	<1 %	
N(1520)	$3/2^{-}$	55-65 %	0.07-0.09 %	
N(1535)	$1/2^{-}$	32-52 %	30-55 %	
N(1650)	$1/2^{-}$	50-70 %	15-35 %	
N(1675)	$5/2^{-}$	38-42 %	<1 %	
N(1680)	$5/2^+$	60-70 %	<1 %	
N(1700)	$3/2^{-}$	7-17 %	1-2 %	
N(1710)	$1/2^+$	5-20 %	10-50 %	
N(1720)	$3/2^+$	8-14 %	1-5 %	
N(1875)	$3/2^{-}$	3-11 %	3-16 %	
N(1880)	$1/2^+$	3-31 %	1-55 %	
N(1895)	$1/2^{-}$	2-18 %	15-45 %	
N(1900)	$3/2^+$	1-20 %	2-14 %	
N(2060)	$5/2^{-}$	7-12 %	2-38 %	
N(2100)	$1/2^+$	8-32 %	5-45 %	
N(2120)	$3/2^{-}$	5-15 %	1-5 %	
N(2190)	$7/2^{-}$	10-20 %	1-5 %	
N(2220)	$9/2^{-}$	15-30 %	N/A	

η Electroproduction Kinematics

- THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC
- **Key Idea:** The η electroproduction reaction is studied in the center-of-mass frame, with key kinematic variables W, Q², cos(θ^*), and φ^* .
- Center-of-mass frame: resonance is at rest

Objective: Measuring Beam Spin Asymmetry (A_{LU}) in η Electroproduction

- **Key Idea:** First ever measurement of the beam spin asymmetry in exclusive η electroproduction in a previously unexplored kinematic region (1.6 \leq W \leq 2.2 GeV).
- Longitudinally polarized electron beam on unpolarized stationary proton target
- Complements existing cross section and polarization observable measurements

Polarized cross sections:

$$\sigma^{\pm} = \sigma_T + \epsilon \sigma_L + \sqrt{2\epsilon(1+\epsilon)} \sigma_{LT} \cos \phi^* + \epsilon \sigma_{TT} \cos 2\phi^* \\ \pm h_e \sqrt{2\epsilon(1-\epsilon)} \sigma_{LT'} \sin \phi^*$$

Beam Spin Asymmetry A_{LU}:

Sin ϕ^* Moment:

$$A_{LU} = \frac{1}{P_b} \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-} \qquad A_{LU} = \frac{A_{LU}^{\sin \phi^*} \sin \phi^*}{1 + A_{UU}^{\cos \phi^*} \cos \phi^* + A_{UU}^{\cos 2\phi^*} \cos 2\phi^*} \\ = \frac{1}{P_b} \frac{N^+ - N^-}{N^+ + N^-} \qquad \approx A_{LU}^{\sin \phi^*} \sin \phi^*$$

 $N^{\pm} = \eta$ signal yield for (±1) helicity P_{b} = beam polarization (0.8517)

I. Illari

CEBAF and CLAS12 at Jefferson Lab

- **Key Idea:** The 12 GeV upgrade of the Continuous Electron Beam Accelerator Facility (CEBAF) and the CLAS12 spectrometer enable high-precision studies of nucleon structure and resonances.
- CEBAF delivers high-energy, longitudinally polarized electron beams
 - Up to 11 GeV to Hall B after 5 passes
 - Beam polarization is measured using the Møller polarimeter in Hall B

Analysis Roadmap

• Key Idea: A systematic approach to extract the beam spin asymmetry (BSA or A_{LU}) and the sin ϕ^* moment of the asymmetry ($A_{LU}^{\sin\phi^*}$) from the data.

I. Illari

CLAS12 Run Group K Dataset

- Key Idea: This work utilizes a subset of the RG-K dataset
- Data collected from Nov. 28 to Dec. 20, 2018 as a short "opportunistic" run
 ~10% of the approved RG-K beam time
- Beam energy: 6.5 GeV
- Longitudinally polarized electron beam (P_b ≥ 85%) on unpolarized liquid hydrogen (LH₂) target
- High luminosity: 10³⁵ cm⁻² s⁻¹
- Total events collected: 7.8 billion

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

Event Selection and **n** Identification

- THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC
- **Key Idea:** η mesons are identified using the missing mass technique in the ep \rightarrow e'p'X reaction.
- Detect scattered electron and proton in the Forward Detector
- Reconstruct the missing mass squared (MM²) of the undetected particle X
- η signal appears as a peak around MM² = 0.3 GeV²
- Apply analysis cuts:

DNP

- W < 2 GeV (nucleon resonance region)
- $0.15 \text{ GeV}^2 < MM^2 < 0.45 \text{ GeV}^2$ (η peak region)
- Implement standard RGK fiducial cuts and cuts developed for analysis

Kinematic Binning: Stepwise Methodology

Kinematic Binning: Phase Space Coverage

• **Key Idea:** The multi-dimensional kinematic phase space is partitioned into discrete bins for detailed analysis.

W [GeV]	φ* [deg]	Q ² [GeV ²]	cos(θ*)
1.610 to 1.635	0 to 38	0.300 to 0.521	-1.0 to -0.5
1.635 to 1.660	38 to 68	0.521 to 0.896	-0.5 to 0.0
1.660 to 1.685	68 to 91	0.896 to 1.850	0.0 to 0.5
1.685 to 1.710	91 to 115	1.850 to 5.671	0.5 to 1.0
1.710 to 1.735	115 to 180		
1.735 to 1.760	180 to 246		
1.760 to 1.785	246 to 269		
1.785 to 1.810	269 to 294		
1.810 to 1.860	294 to 324		
1.860 to 1.910	324 to 360		
1.910 to 1.960			
1.960 to 2.010			
2.010 to 2.110			
2.110 to 2.210			

Illari

10

0.2

-0.2 -0.4 -0.6 -0.8

50

100

150

200

250

300

350 (deg

Signal Extraction and Background Fit

- THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC
- Key Idea: Extracting the η signal yield requires fitting the missing mass squared distribution with a combination of signal and background fits.

pol3 as "benchmark"

- Signal: Fitted using a Gaussian function
- Background: Fitted using polynomial functions of various orders (pol2, pol3, pol4)
- pol3 chosen as the "benchmark" fits, balancing bias and variance
- Systematic uncertainty analysis is preliminary
 - Dominant source considered is the yield extraction procedure, estimated by comparing different background fits (pol2, pol3, pol4)

Representative Fit to Beam Spin Asymmetry

- THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC
- **Key Idea:** The BSA is extracted by fitting the asymmetry as a function of ϕ^* with a sine function.
- Data binned over W and ϕ^* , integrated over Q^2 and $\cos\theta^*$

$$A_{LU} = \frac{1}{P_b} \frac{N^+ - N^-}{N^+ + N^-} A_{LU} \approx A_{LU}^{\sin \phi *} \sin \phi *$$
DNP
I. Illari

Sine Moment of the Beam Spin Asymmetry ($A_{LU}^{sin\phi^*}$)

- Key Idea: The sine moment of the asymmetry, A_{LU}^{sinφ*}, is extracted to study the dependence on the center-of-mass energy W.
- Data binned over W and φ*, integrated over Q² and cosθ*
- Error bars represent statistical uncertainties
- Grey histograms around zero line indicate systematic uncertainties
- Red lines: selected nucleon resonances
- Blue lines: selected meson production thresholds
- Vertical lines suggest interesting physics at specific W values but do not definitively explain the observed behavior

Q^2 Dependence of the Sine Moment ($A_{LU}^{sin\phi^*}$)

• **Key Idea:** Binning the data over Q^2 allows for investigating the dependence of $A_{LU}^{\sin \phi^*}$ on the four-momentum transfer squared.

Full Kinematic Dependence of the Sine Moment

THE GEORGE

WASHINGTON UNIVERSITY

Key Idea: A comprehensive study of the sine moment's dependence on the kinematic phase space.

Comparison with Theoretical Models: An Illustrative Example

- THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC
- **Key Idea:** The beam spin asymmetry data has the potential to constrain and improve theoretical models of η electroproduction.
- Data binned over W, φ*, and Q² and integrated over cosθ*
- Jülich-Bonn-Washington (JBW)
- EtaMAID
- Illustrative example of the potential for this data to constrain and improve theoretical models
- Limitations in the models (small Nη datasets, lack of polarization observables) prevent definitive conclusions at this stage

Data: 1.685 GeV \leq W < 1.710, 0.300 GeV² \leq Q² < 0.521 GeV², Integrated over cosO* η MAID2023: W = 1.6975 GeV, Q² = 0.4105 GeV², Integrated over various Θ^* $|BW: W = 1.6975 \text{ GeV}, Q^2 = 0.4105 \text{ GeV}^2, \Theta^* = 105 \text{ deg}$ 0.15 Sys. Unc. 17% Asin $\phi *$ Fit to Data **n**MAID TAL 0.10 Data+Stat. Unc. LIMIA 85. JBW Fit 3 II 0.05 P_b 0.00 $\frac{1}{P_b}\frac{N^+ - N^-}{N^+ + N^-}$ -0.05 RELIMINA -0.10 -0.1550 100 150 200 250 300 350 ϕ^* [dea]

Summary of Key Findings and Impact

- **Key Idea:** The beam spin asymmetry measurements in η electroproduction offer valuable data for theoretical models and could be provide new insights into nucleon resonances.
- Findings:
 - Consistently negative $A_{LU}^{\sin\phi^*}$ values across the W range
 - Dip-like structure near N(1710)
 - Cusp-like behavior near N(1895)
- Impact:
 - Expands kinematic reach in η electroproduction BSA measurements
 - Provides new data to evaluate and constrain theoretical models
- Next Steps and Path to Publication:
 - **In progress:** Perform simulations and use GEMC to determine acceptances
 - In progress: Prepare a CLAS12 Analys: Note
 - Explore collaborations with EtaMAID and JBW

Any Questions?

 \bullet \bullet \bullet