

Study of p⁰ Photoproduction off of Protons in CLAS6

Brandon Tumeo Advisor: Dr. Lei Guo October 25, 2024

This work was supported by the US Department of Energy Office of Science, Office of Nuclear Physics, under contract no. DE-SC0013620

Introduction

Vector meson production typically studied using differential cross sections

Low |t|:

• Experimental data has shown $d\sigma/dt$ exhibits exponential behavior in the forward region ($\theta^{CM} < 90^{\circ}$); modeled by versions of Regge theory

High |t|, high s:

- Behavior of $d\sigma/dt$ for V-production at $\theta^{\rm CM}\approx 90^\circ$ is predicted by Constituent Counting Rules

Basic Regge Theory

Regge theory \rightarrow t-channel exchange of **families** of particles ("Reggeons")

Expect $d\sigma/dt \sim e^{-B|t|}$ for small |t|

B is sensitive to exchanged Reggeon

 $\alpha(t) = \alpha(0) + \alpha'|t| \rightarrow \text{spin of Reggeon ("Regge Trajectory")}$

 $B = 2\alpha' \ln(s/s_0) \rightarrow t$ -slope

Basic Regge Theory

Regge theory \rightarrow t-channel exchange of **families** of particles ("Reggeons")

Expect $d\sigma/dt \sim e^{-B|t|}$ for small |t|

B is sensitive to exchanged Reggeon

 $\alpha(t) = \alpha(0) + \alpha'|t| \rightarrow spin of Reggeon ("Regge Trajectory")$

 $B = 2\alpha' ln(s/s_0) \rightarrow t$ -slope

Plot pulled from (M. Battaglieri et al. 2001) [1]

Constituent Counting Rule

At $\theta^{\rm CM} \approx 90^{\circ}$ and high s, $d\sigma/dt \sim s^{-(n-2)}$ n: total number of elementary fields For $\gamma p \rightarrow Vp$, n = 1+3+2+3 = 9 $\rightarrow d\sigma/dt \sim s^{-7}$

Constituent Counting Rule

At $\theta^{CM} \approx 90^{\circ}$ and high s, $d\sigma/dt \sim s^{-(n-2)}$ n: total number of elementary fields For $\gamma p \rightarrow Vp$, n = 1+3+2+3 = 9 $\rightarrow d\sigma/dt \sim s^{-7}$

CCR inconsistent with VM photoproduction experimental data:

 $\boldsymbol{\rho}{:} \quad \mathrm{s}^{\text{-}8} \ (\mathrm{M}. \ \mathrm{Battaglieri} \ et \ al. \ 2001)$

Need more ρ data!

ω:

ω:

s^{-7.2} (M. Battaglieri *et al.* 2003) s^{-9.4} (B. Dey 2014) s^{-9.08} (T. Reed *et. al.* 2020) s⁻¹² (B. Dey 2014)

From (B. Dey 2014) [3]

Objectives:

Extract $d\sigma/dt$ for $\gamma p \rightarrow \rho^0 p$ using CLAS6 g12 data

- Low |t|: estimate t-slopes $B \leftarrow d\sigma/dt \sim e^{-B|t|}$ for small |t|
- High |t|, s: estimate $\mathbf{n} \leftarrow d\sigma/dt|_{90^{\circ}}$ vs. s ~ s⁻⁽ⁿ⁻²⁾

CLAS6 at Jefferson Lab

Thomas Jefferson National Accelerator Facility Located in Newport News, VA Four halls: A, B, C, D (new) CEBAF: accelerated electrons up to 6 GeV

CLAS housed in Hall B

Data from g12 run period (Apr 2008 to Jun 2008) Photon beam with energies up to 5.7 GeV 40 cm long ℓH_2 target

Yield Estimation

Differential Cross Section

Summary and Outlook

Must modify event generators

- pp⁰: more realistic efficiency $d\sigma/dt \rightarrow weight \text{ generator} \rightarrow efficiency \rightarrow d\sigma/dt \rightarrow \dots$
- $\pi\Delta(1232)$: decay angular distributions + many more events

Need systematic uncertainties

References

[1] Battaglieri, M. et al. "Photoproduction of the rho Meson on the Proton at Large Momentum Transfer." Phys. Rev. Lett. 87, no. 17 (2001): 172002, doi: 10.1103/PhysRevLett.87.172002.

[2] Reed, Trevor et al. "Constituent counting rule and ω photoproduction." Phys. Rev. C 103, no. 6 (2021): 065203, doi: 10.1103/PhysRevC.103.065203

[3] Dey, Biplab. "Scaling behavior in exclusive meson photoproduction from Jefferson Lab at large momentum transfers