Lambda-Proton Elastic Scattering Using Inclusively Produced Beams*

Andy Flores, G.R. Acosta, A.H. Scott, A.V. Tran, and J.W. Price (California State University, Dominguez Hills)

The use of short-lived beams in nuclear physics research has been established by a recent publication on Λp scattering. Extending this technique to beams with shorter lifetimes requires inclusive production, in which the beam properties are determined using only the final-state particles. We are repeating the $\Lambda p \rightarrow \Lambda p$ measurement with CLAS, using a different dataset; the beam Λ comes from the process $\gamma p \rightarrow \Lambda x$. Using only the scattered proton and the products of the $\Lambda \rightarrow \pi p$ decay, we reconstruct the $Xp \rightarrow \Lambda p$ process to determine the number of events. A separate analysis of $\gamma p \rightarrow \Lambda x$ is used to determine the incident flux of the beam Λs . The angle and momentum of the beam Λ determine the effective target thickness. A parallel measurement of the process $pp \rightarrow pp$ will verify the determination of the beam flux and target thickness; this measurement will test our ability to correct for the decay of the Λ . Strong cuts on the Λp vertex position reveal a fairly clean spectrum. This technique will be used not only for further measurements with Λ beams, but also with beams of other short-lived particles, such as K_s, Σ, Ξ , and Ω . This poster will present the motivation and history of this work, the current status of our analysis using inclusively produced beams, and prospects for future work in this field.

*This work is supported by the US Department of Energy and by the CSUDH Office of Undergraduate Research.