Supplemental Material: First Measurement of Λ Electroproduction off Nuclei in the Current and Target Fragmentation Regions

T. Chetry, 29, 13 L. El Fassi, 29, * W. K. Brooks, 44, 45, 46, 43 R. Dupré, 23 A. El Alaoui, 44 K. Hafidi, 1 P. Achenbach,⁴³ K.P. Adhikari,²⁹ Z. Akbar,⁵² W.R. Armstrong,¹ M. Arratia,⁴⁸ H. Atac,⁴² H. Avakian,⁴³ L. Baashen,¹³ N.A. Baltzell,⁴³ L. Barion,¹⁷ M. Bashkanov,⁵⁰ M. Battaglieri,¹⁹ I. Bedlinskiy,³⁰ B. Benkel,⁴⁴ F. Benmokhtar,¹⁰ A. Bianconi,^{47,22} A.S. Biselli,^{11,4} M. Bondi,²⁰ W.A. Booth,⁵⁰ F. Bossù,⁶ S. Boiarinov,⁴³ K.-Th. Brinkmann,³⁶ W.J. Briscoe,¹⁵ D. Bulumulla,³⁵ V.D. Burkert,⁴³ D.S. Carman,⁴³ J.C. Carvajal,¹³ A. Celentano,¹⁹ P. Chatagnon,^{43,23} V. Chesnokov,^{40,34} G. Ciullo,^{17,12} P.L. Cole,^{27,5,43} M. Contalbrigo,¹⁷ G. Costantini,^{47,22} A. D'Angelo,^{20,39} N. Dashyan,⁵⁴ R. De Vita,¹⁹ M. Defurne,⁶ A. Deur,⁴³ S. Diehl,^{36,8} C. Djalali,^{34,41} H. Egiyan,⁴³ L. Elouadrhiri,⁴³ P. Eugenio,¹⁴ S. Fegan,⁵⁰ A. Filippi,²¹ G. Gavalian,^{43,31} Y. Ghandilyan,⁵⁴ G.P. Gilfoyle,³⁸ D.I. Glazier,⁴⁹ A.A. Golubenko,⁴⁰ G. Gosta,⁴⁷ R.W. Gothe,⁴¹ K.A. Griffioen,⁵³ M. Guidal,²³ L. Guo,¹³ H. Hakobyan,⁴⁴ M. Hattawy,³⁵ T.B. Hayward,⁸ D. Heddle,^{7,43} A. Hobart,²³ M. Holtrop,³¹ Y. Ilieva,⁴¹ D.G. Ireland,⁴⁹ E.L. Isupov,⁴⁰ D. Jenkins,⁵¹ H.S. Jo,²⁶ M. L. Kabir,²⁹ A. Khanal,¹³ M. Khandaker,³³ A. Kim,⁸ W. Kim,²⁶ F.J. Klein,⁵ A. Kripko,³⁶ V. Kubarovsky,^{43,37} V. Lagerquist,³⁵ L. Lanza,²⁰ M. Leali,^{47,22} S. Lee,¹ P. Lenisa,^{17,12} X. Li,²⁸ K. Livingston,⁴⁹ I.J.D. MacGregor,⁴⁹ D. Marchand,²³ V. Mascagna,^{47,22} B. McKinnon,⁴⁹ C. McLauchlin,⁴¹ Z.E. Meziani,^{1,42} S. Migliorati,^{47,22} T. Mineeva,⁴⁴ M. Mirazita,¹⁸ V. Mokeev,⁴³ C. Munoz Camacho,²³ P. Nadel-Turonski,⁴³ K. Neupane,⁴¹ S. Niccolai,²³ M. Nicol,⁵⁰ G. Niculescu,²⁵ M. Osipenko,¹⁹ A.I. Ostrovidov,¹⁴ P. Pandey,³⁵ M. Paolone,³² L.L. Pappalardo,^{17,12} R. Paremuzyan,^{43,31} E. Pasyuk,⁴³ S.J. Paul,⁴⁸ W. Phelps,^{7, 15} N. Pilleux,²³ M. Pokhrel,³⁵ J. Poudel,³⁵ J.W. Price,² Y. Prok,^{35, 52} B.A. Raue,¹³ T. Reed,¹³ J. Richards,⁸ M. Ripani,¹⁹ J. Ritman,^{16,24} G. Rosner,⁴⁹ F. Sabatié,⁶ C. Salgado,³³ S. Schadmand,¹⁶ A. Schmidt,^{15,28} R.A. Schumacher,⁴ Y.G. Sharabian,⁴³ E.V. Shirokov,⁴⁰ U. Shrestha,⁸ P. Simmerling,⁸ D. Sokhan,^{6,49} N. Sparveris,⁴² S. Stepanyan,⁴³ I.I. Strakovsky,¹⁵ S. Strauch,^{41,15} J.A. Tan,²⁶ N. Trotta,⁸ R. Tyson,⁴⁹ M. Ungaro,^{43, 37} S. Vallarino,¹⁷ L. Venturelli,^{47, 22} H. Voskanyan,⁵⁴ E. Voutier,²³ X. Wei,⁴³ L.B. Weinstein,³⁵ R. Williams,⁵⁰ R. Wishart,⁴⁹ M.H. Wood,^{3,41} M. Yurov,²⁹ N. Zachariou,⁵⁰ Z.W. Zhao,^{9,35} and M. Zurek¹

(The CLAS Collaboration)

¹Argonne National Laboratory, Argonne, IL 60439

²California State University, Dominguez Hills, Carson, CA 90747

³Canisius College, Buffalo, NY 14208

⁴Carnegie Mellon University, Pittsburgh, PA 15213

⁵Catholic University of America, Washington, D.C. 20064

⁶IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France

⁷Christopher Newport University, Newport News, VA 23606

⁸University of Connecticut, Storrs, CT 06269

⁹Duke University, Durham, NC 27708-0305

¹⁰Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282

¹¹Fairfield University, Fairfield CT 06824

¹² Universita' di Ferrara, 44121 Ferrara, Italy

¹³Florida International University, Miami, FL 33199

¹⁴Florida State University, Tallahassee, FL 32306

¹⁵ The George Washington University, Washington, D.C. 20052

¹⁶GSI Helmholtzzentrum fur Schwerionenforschung GmbH, D-64291 Darmstadt, Germany

¹⁷INFN, Sezione di Ferrara, 44100 Ferrara, Italy

¹⁸INFN, Laboratori Nazionali di Frascati, 00044 Frascati, Italy

¹⁹INFN, Sezione di Genova, 16146 Genova, Italy

²⁰INFN, Sezione di Roma Tor Vergata, 00133 Rome, Italy

²¹INFN, Sezione di Torino, 10125 Torino, Italy

²²INFN, Sezione di Pavia, 27100 Pavia, Italy

²³ Universit'e Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France

²⁴Institut fur Kernphysik (Juelich), Juelich, 52428, Germany

²⁵ James Madison University, Harrisonburg, VA 22807

²⁶Kyungpook National University, Daegu 41566, Republic of Korea

²⁷Lamar University, 4400 MLK Blvd, PO Box 10046, Beaumont, TX 77710

²⁸Massachusetts Institute of Technology, Cambridge, MA 02139-4307

²⁹ Mississippi State University, Mississippi State, MS 39762-5167

³⁰National Research Centre Kurchatov Institute - ITEP, Moscow, 117259, Russia

³¹University of New Hampshire, Durham, NH 03824-3568

³²New Mexico State University, PO Box 30001, Las Cruces, NM 88003, USA

³³Norfolk State University, Norfolk, VA 23504

³⁴Ohio University, Athens, OH 45701

³⁵Old Dominion University, Norfolk, VA 23529

³⁶II Physikalisches Institut der Universitaet Giessen, 35392 Giessen, Germany

³⁷Rensselaer Polytechnic Institute, Troy, NY 12180-3590

³⁸ University of Richmond, Richmond, VA 23173

³⁹ Universita' di Roma Tor Vergata, 00133 Rome Italy

⁴⁰Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 119234 Moscow, Russia

⁴¹University of South Carolina, Columbia, SC 29208

⁴² Temple University, Philadelphia, PA 19122

⁴³ Thomas Jefferson National Accelerator Facility, Newport News, VA 23606

⁴⁴ Universidad Técnica Federico Santa María, Casilla, 110-V Valparaíso, Chile

⁴⁵Center for Science and Technology of Valparaíso 699, Valparaíso, Chile

⁴⁶SAPHIR Millennium Science Institute, Santiago, Chile

⁴⁷ Universit'a degli Studi di Brescia, 25123 Brescia, Italy

⁴⁸ University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA

¹⁹University of Glasgow, Glasgow G12 8QQ, United Kingdom

⁵⁰ University of York, York YO10 5DD, United Kingdom

⁵¹ Virginia Tech, Blacksburg, VA 24061-0435

⁵² University of Virginia, Charlottesville, VA 22901

⁵³College of William and Mary, Williamsburg, VA 23187-8795

⁵⁴ Yerevan Physics Institute, 375036 Yerevan, Armenia

(Dated: March 10, 2023)

This document contains supplementary information about the Λ identification method in **SP.1**, the acceptance correction details related to the multidimensional (6D) map variables and binning, weight definition and cut, and its application procedure in **SP.2**, a summary of the contributions of systematic effects to the total point-to-point uncertainty budget in **SP.3**, and the reported results in the last two figures, Figs. 3 and 4, of the "First Measurement of Λ Electroproduction off Nuclei in the Current and Target Fragmentation Regions" PRL manuscript as well as two supporting figures, Figs. S1 and S2, in **SP.4**. In Table S6, the z-binned multiplicity ratios are given for all nuclei, while Table S7 (Table S8) contains the transverse momentum broadening as a function of z (A) for all nuclei.

SP.1 Lambda Identification In the sample of reconstructed SIDIS events originating from either the liquid or solid target, one scattered e^- and at least one π^- and p, the decay products of the Λ , were required. To reconstruct the z-binned (π^- , p) invariant mass spectrum for each target, the 4-vector energy-momentum ($P^{\mu} = (E, p_x, p_y, p_z)$) of all identified negatively charged pions and protons were combined event-by-event as

$$P_{\Lambda} = P_p + P_{\pi^-},\tag{S1}$$

where P_{Λ} , P_p , and P_{π^-} are the 4-vector energy-momentum of the Λ candidates, protons, and π^- s, respectively. Figure 2 left shows the acceptance-weighted invariant mass from solid (top) and liquid (bottom) targets in which the Λ peak sits on a huge combinatorial background (red dotted curves) that is subtracted using **RooFit** to extract the pure Λ yields and thus obtain the presented multiplicity ratios in Fig. 3.

SP.2 Acceptance Correction The adopted acceptance correction for this analysis is based on a bin-by-bin correction method. Its main advantage is that it should be, in principle, independent of the model used in the Monte-Carlo (MC) event generator if the chosen bins are infinitely small. This is very important for this channel since it is not expected that the employed model in Pythia would be realistic enough to perfectly reproduce the data. Based on a comparison between MC and experimental data, the chosen AC six dimensional (6D) map variables and binning are summarized in Tables S1- S2.

Variables	Range	Number of bins	Bin width
W [GeV]	2.00 - 2.80	2	0.4
ν	2.25 - 4.25	3	$0.\overline{6}$
ϕ_{π^-} [deg]	0.0 - 360.0	2	180
$\phi_{e\Lambda}$ [deg]	0.0 - 360.0	3	120
P_{Λ} [GeV]	0.10 - 4.25	3	$1.38\overline{3}$
z	0.28 - 1.00	6	see Table S2
Total		648	

Table S1. Binning for the AC map, where ν , W, and z were already defined, ϕ_{π^-} is the π^- azimuthal decay angle in the Λ rest frame, $\phi_{e\Lambda}$ is the angle between the leptonic and hadronic planes, and p_{Λ} is the Λ momentum. Table S2 shows the z bins used as reported in Table S6.

$z-{ m bin}~\#$	1	2	3	4	5	6
z_{min}	0.28	0.38	0.44	0.51	0.60	0.75
z_{max}	0.38	0.44	0.51	0.60	0.75	1.00

Table S2. The z bins used in this analysis.

The acceptance correction factors are defined for each 6D bin $k = (W, \nu, p_{\Lambda}, \phi_{\pi^{-}}, \phi_{e\Lambda}, z)$ as

$$AC_k = \frac{N_{acc}(W,\nu,p_\Lambda,\phi_{\pi^-},\phi_{e\Lambda},z)}{N_{gen}(W,\nu,p_\Lambda,\phi_{\pi^-},\phi_{e\Lambda},z)},$$
(S2)

where $N_{gen}(W, \nu, p_{\Lambda}, \phi_{\pi^{-}}, \phi_{e\Lambda}, z)$ and $N_{acc}(W, \nu, p_{\Lambda}, \phi_{\pi^{-}}, \phi_{e\Lambda}, z)$ are, respectively, the number of generated and accepted events in each bin k. Once these AC coefficients were computed, the data were corrected event-by-event by a

weight $\omega_k = 1/AC_k$, which depends on the bin k to which it belongs. It should be noted that if some 6D AC bins have very small correction factors due to their poor statistics, an artificially large weight would be attributed to those bins that would lead to spikes in the weighted distributions. To avoid this problem, the following weight cut was adopted to minimize this effect on the weighted distributions:

$$60 < \omega_k \le 2400. \tag{S3}$$

Furthermore, the effect of this weight cut was estimated and applied as a global correction factor, f_{ω} , to the extracted results. This estimation was done by weighting the MC accepted N_{acc} events and comparing their sum, $\sum \omega N_{acc}$, to the generated ones as

$$f_{\omega} = \frac{\sum \omega N_{acc}}{N_{gen}}.$$
(S4)

This N_{acc} weighted sum is typically equal to the generated events without the weight cut, however, it is slightly less once applied, leading to various f_{ω} corrections for each z-binned multiplicity ratio result as the p_T -broadening means are insensitive to this correction.

SP.3 Systematic Uncertainties Budget This section contains the contribution of various systematic effects to the reported total point-to-point systematic uncertainty budget for the Λ multiplicity ratios of all nuclei in Table S3 and the corresponding z (A) dependence of p_T -broadening in Table S4 (S5).

SP.4 Tabulated Multiplicity Ratio and p_T -broadening Results This section contains the reported results in the last two figures, Figs. 3 and 4, of the "First Measurement of Λ Electroproduction off Nuclei in the Current and Target Fragmentation Regions" PRL manuscript, detailed in Table S6 for all nuclei z-binned multiplicity ratios, and Table S7 (Table S8) for all nuclei z-binned (A-dependent) transverse momentum broadening. In addition, the correlation between z and the Feynman variable x_F is illustrated in Fig. S1 to support the discussion related to the separation between forward and backward fragmentation regions. Furthermore, the z-binned distributions, as well as AC-weighted averages, of the Bjorken scaling variable x_B are shown in Fig. S2 and Table S9 to illustrate our kinematical coverage for any theoretical calculations aiming to describe our data.

Figure S1. z vs. x_F , where the horizontal dashed line around values of z greater than ~0.55 depicts the discussed separation between forward and backward fragmentation regions suggested by the sign change of x_F (vertical dashed line).

* le334@msstate.edu

						z-b	in Poin	t-to-poi	int Syst	ematic	: Unce	rtainty	(%)					
atic Effect			Carl	bon					Iroi						Le	ad		
	z-1	z-2	z-3	z-4	z-5	z^{-6}	z - 1	z-2	z-3	z-4	z-5	z-6	z-1	z-2	z-3	z-4	z-5	z-6
entification cuts	0.69	4.24	7.24	1.53	3.16	0.00	0.00	0.95	4.34	0.87	3.17	4.45	8.05	3.21	7.80	0.00	8.59	6.91
¢ corrections	0.28	0.00	0.04	0.22	0.22	0.54	1.04	1.28	0.56	0.08	0.00	0.13	1.38	1.85	0.13	0.18	0.00	1.01
variables & binning	3.28	0.00	6.69	9.97	9.17	2.33	6.83	4.80	0.00	6.42	5.90	4.93	6.84	0.00	9.05	7.90	6.06	7.23
weight cuts	0.00	0.00	10.70	0.70	0.00	0.00	0.00	0.00	9.17	1.86	0.00	0.00	5.17	0.00	8.64	12.16	0.00	0.00
ed-tracks combinations	1.80	0.16	0.37	0.27	0.53	0.00	1.14	0.14	0.20	0.00	0.36	0.23	1.79	2.04	0.96	0.13	0.00	0.28
Veigner shapes	7.55	10.80	25.75	5.13	8.69	5.77	20.54	16.37	13.40	1.26	0.46	5.27	5.77	12.02	15.71	4.92	10.85	9.52
mass-range	2.10	1.11	0.00	0.86	1.87	2.89	2.52	1.52	0.43	0.00	1.35	2.39	2.24	1.24	0.00	0.65	1.69	2.72
)2 endcaps	0.06	0.00	0.06	0.09	0.11	0.13	0.03	0.00	0.06	0.08	0.10	0.12	0.07	0.00	0.05	0.07	0.09	0.13
tive correction	0.00	2.08	1.26	3.18	1.53	0.94	1.30	1.14	0.29	0.00	0.95	0.21	0.13	0.00	0.81	1.12	0.58	1.90
Total	8.71	11.84	29.61	11.81	13.25	6.93	21.86	17.19	16.82	6.86	6.92	8.81	13.41	12.67	21.58	15.36	15.21	14.20

Table S3. Multiplicity ratio systematic effects and their contributions for the z-bins shown in Table S2.

Table S4. Transverse momentum broadening systematic effects and their contributions for the z-bins shown in Table S2.

						z-b	in Poir	it-to-pc	int Sys	tematic	3 Unce	rtainty	(%)					
Systematic Effect			Carb	uc					Iro	u					Lea	ad		
	z-1	z-2	z-3	z-4	z-5	z^{-6}	z-1	z-2	z-3	z-4	z-5	z^{-6}	z-1	z-2	z-3	z-4	z-5	z-6
Particle identification cuts	7.14	0.00	3.77	1.77	0.47	6.03	1.05	8.19	4.97	0.00	0.82	0.87	5.07	2.84	6.24	0.00	3.52	3.24
Vertex Corrections	6.63	8.99	4.62	1.02	0.00	3.99	2.57	2.54	0.00	0.33	0.33	0.67	3.40	1.87	0.81	0.00	0.74	2.79
AC 6D map variables & binning $ $	4.77	6.95	6.02	0.00	8.91	5.49	6.36	9.72	3.05	14.85	0.00	2.20	9.84	7.83	10.52	3.83	7.73	0.00
AC weight cuts	1.83	0.47	18.23	6.74	0.00	0.09	0.00	0.31	13.77	1.52	0.00	0.12	20.17	0.59	19.88	23.63	0.08	0.00
CB sideband subtraction	31.84	0.0	2.1	8.81	0.88	3.79	4.34	2.36	0.0	1.67	7.58	20.32	77.31	8.16	0.0	2.49	6.33	13.28
Radiative correction	3.87	0.24	0.00	0.03	0.00	0.19	0.18	0.28	0.32	0.54	0.00	0.12	5.06	0.49	0.27	0.01	0.00	0.00
Total	33.88	11.38	20.21	11.28	8.96	9.84	8.19	13.18	14.96	15.04	7.63	20.46	80.89	11.84	23.35	24.07	10.62	13.95

Table S5. A-dependent transverse momentum broadening systematic effects and their contributions.

Customotic officit	Point-to-point	Systematic Unc	certainty (%)
Dystering and energy	Carbon	Iron	Lead
Particle identification cuts	4.69	1.35	0.00
Vertex Corrections	2.70	0.00	0.38
AC 6D map variables & binning	0.57	0.00	2.21
AC weight cuts	3.40	0.00	7.07
CB sideband subtraction	5.52	0.0	2.87
Radiative correction	0.04	0.17	0.00
Total	8.46	1.36	7.96

6

∼-hin		R^A_{Λ} \pm Statistical \pm Systematical Uncertainties	
2-011	Carbon	Iron	Lead
0.28 - 0.38	$3.4256 \pm 0.5319 \pm 0.3004$	$5.7536 \pm 0.5681 \pm 1.2661$	$7.2363 \pm 0.9997 \pm 0.9893$
0.38 - 0.44	$1.3447 \pm 0.1603 \pm 0.1628$	$1.9382\pm0.1769\pm0.3629$	$2.6378 \pm 0.3405 \pm 0.3863$
0.44 - 0.51	$1.1084 \pm 0.1205 \pm 0.3299$	$2.0100\pm0.1735\pm0.3674$	$2.1293 \pm 0.2316 \pm 0.4987$
0.51 - 0.60	$1.1498 \pm 0.0883 \pm 0.1400$	$1.2126\pm0.0823\pm0.1663$	$1.1857 \pm 0.1057 \pm 0.2659$
0.60 - 0.75	$1.1174 \pm 0.0756 \pm 0.1519$	$0.9660\pm0.0617\pm0.1588$	$0.8910 \pm 0.0759 \pm 0.2364$
0.75 - 1.00	$0.9506 \pm 0.1011 \pm 0.0741$	$0.6450\pm0.0529\pm0.1549$	$0.5622 \pm 0.0621 \pm 0.2096$

Table S6. Measured Λ z-binned multiplicity ratios for all nuclei along with their total statistical and systematic (point-to-point and normalization uncertainties depicted in Fig. 3 added in quadrature) uncertainties.

Table S7. Measured Λ z-binned p_T -broadening results for all nuclei with their total statistical and systematic (point-to-point and normalization uncertainties depicted in Fig. 4 left added in quadrature) uncertainties.

∼-hin		Δp_T^2 (GeV ²) ± Statistical ± Systematical Uncertainties	
2-0111	Carbon	Iron	Lead
0.28 - 0.38	$0.0003 \pm 0.0143 \pm 0.0015$	$0.0112 \pm 0.0127 \pm 0.0015$	$-0.0072 \pm 0.0151 \pm 0.0060$
0.38 - 0.44	$0.0259 \pm 0.0160 \pm 0.0033$	$0.0422\pm0.0140\pm0.0057$	$0.0592 \pm 0.0171 \pm 0.0071$
0.44 - 0.51	$0.0648 \pm 0.0174 \pm 0.0132$	$0.0894 \pm 0.0147 \pm 0.0134$	$0.0613 \pm 0.0174 \pm 0.0144$
0.51 - 0.60	$0.1317 \pm 0.0165 \pm 0.0149$	$0.2120\pm0.0168\pm0.0319$	$0.2007 \pm 0.0211 \pm 0.0483$
0.60 - 0.75	$0.1879 \pm 0.0225 \pm 0.0169$	$0.2591 \pm 0.0218 \pm 0.0198$	$0.3140 \pm 0.0295 \pm 0.0334$
0.75 - 1.00	$0.1145 \pm 0.0157 \pm 0.0114$	$0.1381 \pm 0.0149 \pm 0.0283$	$0.1788 \pm 0.0209 \pm 0.0250$

Table S8. Measured Λ A-dependent p_T -broadening results for all nuclei along with their total statistical and systematic (point-to-point and normalization uncertainties depicted in Fig. 4 right added in quadrature) uncertainties.

A	Δp_T^2 (GeV ²) ± Statistical ± Systematical Uncertainties
Carbon	$0.0952 \pm 0.0272 \pm 0.0082$
Iron	$0.1404 \pm 0.0376 \pm 0.0024$
Lead	$0.1823 \pm 0.0451 \pm 0.0146$

Table S9. z-binned x_B AC-weighted averages for all nuclei.

~ hin		x_B AC-weighte	ed Average	
2-011	LD2	Carbon	Iron	Lead
0.28 - 0.38	0.2176	0.2395	0.2401	0.2391
0.38 - 0.44	0.2529	0.2574	0.2623	0.2551
0.44 - 0.51	0.2585	0.2665	0.2701	0.2724
0.51 - 0.60	0.2661	0.2699	0.2697	0.2703
0.60 - 0.75	0.2756	0.2648	0.2667	0.2646
0.75 - 1.00	0.2921	0.2858	0.2821	0.2817

