Status Report on the Precision Measurement of d_2^n Experiment E06-014

Diana Parno¹ David Flay² Matthew Posik²

Carnegie Mellon University

Temple University

December 15, 2009

Diana Parno (Carnegie Mellon)

E06-014 Status Report

December 15, 2009 1 / 10

Outline

- Why d_2^n Is Worth Measuring
- Measuring d_2^n in Hall A

Polarimetry

- 3 LHRS Calibration
 - Gain Matching
 - Pion Rejection
 - 4 BigBite Calibration

э

Probing QCD Through Quark-Gluon Interactions

• d_2^n , the second moment of a linear combination of the spin structure functions g_1 and g_2 , gives access to quark-gluon correlations

$$d_2^n(Q^2) = \int_0^1 x^2 \left(2g_1(x,Q^2) + 3g_2(x,Q^2) \right) dx$$

- There are several interesting interpretations of d_2^n :
 - Color field response to polarization of a nucleon (X. Ji)
 - Averaged transverse force on a quark just after interaction with a virtual photon (M. Burkardt)
- Large-x contributions dominate d_2^n , so precision data at high x can greatly improve our picture of nucleonic quark-gluon interactions

イロト 不得 とくほ とくほ とうほう

Strategy for E06-014

- Scatter a longitudinally polarized electron beam from polarized ³He
- Change the target polarization direction to measure parallel and perpendicular asymmetries
- Kinematic range: $0.2 \leq x \leq 0.7$ and $2 \leq Q^2 \leq 6~{\rm GeV^2}$

- Two parallel single-arm measurements
- Left HRS: measure the total unpolarized cross section σ_0
- BigBite: measure the asymmetries A_{\parallel} and A_{\perp}

イロト イポト イヨト イヨト

4 / 10

Measuring d_2^n

• Measure total cross section σ_0 and asymmetries ${\it A}_{||}$ and ${\it A}_{\perp}$

$$A_{\parallel} = rac{\sigma^{\downarrow\uparrow} - \sigma^{\uparrow\uparrow}}{2\sigma_0} ext{ and } A_{\perp} = rac{\sigma^{\downarrow\Rightarrow} - \sigma^{\uparrow\Rightarrow}}{2\sigma_0}$$

• From there, we can compute the spin structure functions g_1 and g_2 – and finally, d_2^n

•
$$g_1 = \frac{MQ^2}{4\alpha^2} \frac{y}{(1-y)(2-y)} 2\sigma_0 \left[A_{\parallel} + \tan \frac{\theta}{2} A_{\perp} \right]$$

• $g_2 = \frac{MQ^2}{4\alpha^2} \frac{y^2}{2(1-y)(2-y)} 2\sigma_0 \left[-A_{\parallel} + \frac{1+(1-y)\cos\theta}{(1-y)\sin\theta} A_{\perp} \right]$

- We expect a fourfold improvement in the error on d_2^n over previous measurements:
 - $\Delta d_2^n \approx 7.5 \times 10^{-4}$

Electron Beam Polarimetry

- To compute A_{\parallel} and $A_{\perp},$ we need precise knowledge of the electron beam polarization
- Polarimetry strategies:
 - Four Moller measurements during production running
 - Commissioning of new Compton photon detector, integrating DAQ method
- We are nearly finished analyzing Compton polarization data from the new Carnegie Mellon DAQ

Diana Parno (Carnegie Mellon)

Gain Matching

- We must gain-match our PMTs in order to make meaningful comparisons between their ADC spectra
- We have completed this work for
 - Gas Čerenkov (10 PMTs)
 - Pion rejectors (34 blocks in each of two layers)

Pion Rejection Efficiency in Gas Čerenkov

- How efficient is the LHRS gas Čerenkov at finding pions?
- It depends on the cut position in the Čerenkov and on the momentum setting
- We can compute the efficiency by testing the Čerenkov's treatment of a pion sample (selected in the pion rejector): $e = 1 N_{\pi}^{Cer} / N_{\pi}^{PR}$

BigBite Čerenkov Calibration

- A "good electron" in a given BigBite Čerenkov PMT will have struck the corresponding mirror
- Determining whether a given track hit the right mirror gives us a sense of the background in the Čerenkov PMTs

Diana Parno (Carnegie Mellon)

E06-014 Status Report

9 / 10

Future Work

- Continued calibration work
 - BigBite optics
 - BigBite shower calibration
 - LHRS efficiencies (electron detection, pion rejection, cuts)
- Simulation work
 - Pion rejectors
 - Analyzing power for new Compton photon detector

10 / 10