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STABILITY OF MARKOVIAN PROCESSES III: FOSTER- 
LYAPUNOV CRITERIA FOR CONTINUOUS-TIME 
PROCESSES 

SEAN P. MEYN,* University of Illinois 
R. L. TWEEDIE,** Colorado State University 

Abstract 

In Part I we developed stability concepts for discrete chains, together with 
Foster-Lyapunov criteria for them to hold. Part II was devoted to developing related 
stability concepts for continuous-time processes. In this paper we develop criteria for 
these forms of stability for continuous-parameter Markovian processes on general 
state spaces, based on Foster-Lyapunov inequalities for the extended generator. 

Such test function criteria are found for non-explosivity, non-evanescence, Harris 
recurrence, and positive Harris recurrence. These results are proved by systematic 
application of Dynkin's formula. 

We also strengthen known ergodic theorems, and especially exponential ergodic 
results, for continuous-time processes. In particular we are able to show that the test 
function approach provides a criterion for f-norm convergence, and bounding 
constants for such convergence in the exponential ergodic case. 

We apply the criteria to several specific processes, including linear stochastic 
systems under non-linear feedback, work-modulated queues, general release storage 
processes and risk processes. 
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FUNCTIONS; ERGODICITY; EXPONENTIAL ERGODICITY; RECURRENCE; STORAGE 
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1. Introduction 

1.1. Criteria for stability and recurrence. Our objectives in this paper are to 
obtain a unified approach to the stability classification of continuous-time Markov 
processes via Foster-Lyapunov inequalites applied to the generators of the process. 

In Part II of this series of papers [25], we developed various such forms of 
'stability' for Markov processes. These are analogous to and based on stability 
concepts in discrete time, developed in Part I [24]. In [24] we also developed 
(extending [35], [27], [20]) drift or Foster-Lyapunov conditions on the transition 
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probability kernels governing the motion of the chain and these served to classify 
the chain as non-evanescent, recurrent, positive recurrent and so on. Consideration 
of the generator of the process is natural in continuous time, as the generator is 

usually more accessible than the transition function. 
In this paper we develop a similar approach for stability of general right processes 

evolving on locally compact separable metric spaces, based upon the extended 

generator for the process. We obtain criteria for non-explosivity, non-evanescence, 
Harris recurrence, and positive Harris recurrence, as well as (and perhaps most 

importantly, in practice) ergodicity and geometric ergodicity. The processes covered 

by our approach include diffusions and jump-deterministic processes as special 
cases. 

Criteria for stability of continuous-time processes on countable spaces, based on 

Foster-Lyapunov inequalities (drift conditions) for the infinitesimal generator, have 
been developed in [34], [36], [6]. For diffusion processes there are precedents for 
this work to be found in Kushner's work [19], which is primarily concerned with 
criteria for various generalizations of stability in the sense of Lyapunov using drift 
conditions associated with the infinitesimal generator, together with the application 
of Dynkin's formula. Our work is more closely related to that of Khas'minskii [17] 
who deals with stochastic generalizations of stability in the sense of Lyapunov in a 
fashion similar to [19], and presents criteria for various forms of recurrence, based 

again upon Dynkin's formula. 
The paper is organized as follows. In the remainder of this section we describe the 

basic assumptions, present a version of Dynkin's formula and describe a truncation 
scheme which is required for its application. Section 2 presents a drift condition for 
the process which is shown to imply 'non-explosion'; that is, that the escape time for 
the process is infinite with probability 1. In Section 3 a stronger condition is used to 
obtain non-evanescence of the sample paths of the process. Using results from [25], 
this gives a criterion for Harris recurrence. In Section 4 we use a continuous-time 
version of Foster's criterion to obtain sufficient conditions for the existence of an 
invariant probability 7r, together with finiteness of 7r(f) for general functions f, and 

positive Harris recurrence or generalizations of positive recurrence. 
Sections 5 and 6 contain the most important results in the paper. We obtain 

criteria for total variation norm convergence of the distributions of the process, 
convergence of the expectation of unbounded functions of the process, and criteria 
under which such convergence takes place at a geometric rate. 

In the final part of the paper, we apply all of these results to jump-deterministic 
processes, including work-modulated queues, general release storage processes and 
risk processes, and diffusion processes, where we obtain new convergence results 
for passive linear stochastic systems under static non-linear feedback. 

1.2. The processes 4 and m". Here we provide a brief description of the context 
which we treat, which is intended to make the paper relatively self-contained. We 
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do not discuss many of the concepts in detail, since the background to this paper 
and the processes we consider is given in [24] and [25]. 

We suppose that = {I,: t R+} is a time-homogeneous Markov process with 
state space (X, A(X)), and transition functions (P'). When (o = x the process 0 
evolves on the probability space (Q, , Px), where Q denotes the sample space. It is 
assumed that the state space X is a locally compact and separable metric space, and 
that 1(X) is the Borel field on X. 

The operator P' acts on bounded measurable functions f and a-finite measures s 
on X via 

PYf(x) = 
fP'(x, 

dy)f(y), P'(A) = f p(dx)P'(x, A). 

For a measurable set A we let 

rA = inf 
{t-0:! 

, EA}, A 
oA = f tA} 

dt. 

The Markov process is called qg-irreducible if for the a-finite measure qg, 

p{B} > 0Ex[rlB]> 0, x eX 

and Harris recurrent if 9 {B} > 0= 
>Px(rB 

< oo) = 1 for any x eX. Whilst some of our 
results hold only for irreducible (i.e. (9-irreducible for some 9p) processes, many 
hold without this restriction. The most interesting of our stability results will 
however be based on Harris recurrence or stronger forms of recurrence. 

Throughout this paper we let {O, :n E Z,} denote a fixed family of open 
precompact sets for which O, X as n -- oo. By precompact we mean that the closure 
of O, is a compact subset of X for each n. We let Tm to:;, denote the first-entrance 
time to Of, (set to oo if the process does not leave the set Om), and denote by ? the 
exit time for the process, defined as 

(1) ? A lim Tm 

We assume without further comment that the process {Q•,: 05t < ?} killed at time ( 
is a (Borel) right process [28]. 

In the sense of stability used in this paper, the first property of importance is 

explosivity, or rather non-explosivity. 

Non-explosivity. We call the process 4 non-explosive if Px { = c} = 1 for all 
x E X. 

The non-explosivity property is often called regularity (see [34] in the countable space 
case, [16] in the piecewise linear context, and [17] for diffusions). Unfortunately, 
regularity for sets in Markov chain theory can mean something quite different ([26], 
[23]), so we have adopted this nomenclature, calling the time " the time of 
explosion, essentially as in Kliemann [18]. 
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If the process 0 is a non-explosive right process, then 0 is strongly Markovian 
with right-continuous sample paths, and non-explosivity implies that the set 

{t,:0 _ t S T} is precompact with probability 1 for any TE R . 
In order to develop drift criteria for non-explosivity or recurrence based on the 

generator of the process introduced in the next section, we need to consider 
truncations of the process 0. 

For mE 
•Z+, 

let Am denote any fixed state in Oc, and define Om by 

[M(N t< Tm 
(2) 7= A t >m Tm" 

Theorem 12.23 of [28] implies that the resulting process is a non-explosive right 
process. For the theory developed in this paper, we may in fact let tm denote any 
non-explosive right process with the property that Qm7 = F, whenever t < Tm. For 

instance, we may take Q)7m = 
(4^ 

ATm where s A t denotes the minimum of s and t. This 
is the approach which is taken in [19]. For applications, however, the specification of 
a 'graveyard state' Am as in (2) appears most suitable. 

1.3. The extended generator and Dynkin's formula. Our central goal in this paper 
is to provide conditions, couched in terms of the defining characteristics of the 

process 0, for the various forms of stability developed in [25] to hold. 
In general the characteristics used in practice to define the process are not 

couched in terms of the semigroup P't, but rather of the extended generator of the 

process. The following definition is a slightly restricted form of that in Davis [9]. 

The extended generator. We denote by D(,4) the set of all functions V : Xx 

R --> R for which there exists a measurable function U:X x U 
-- 

R R such that for 
each x EX, t > 0, 

(3) Ex[V(D,, t)] = V(x, 0) + Exf U(D,, s) ds 

(4) Ex [I U(,, s)l] ds < oo. 

We write 4sV U and call s the extended generator of the process 0. 

The identity (3) states that the adapted process (My, 'F) is a martingale, where 

MV= V(Dt, t)- V(QD0, 0) - U(s,, s)ds. 

This definition is an extension of the infinitesimal generator (see [19]) for Hunt 
processes: the more common definition of this is in terms of a differentiation 
operation as in (5) below. 

For general functions f, it is not easy to know if f is in the domain of i. For 
example, one way to proceed is to first construct the strong generator (see [17] in 
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the context of diffusions), whose domain typically contains bounded functions with 
appropriate differentiability properties, and then note that the domain of the strong 
generator is contained in the domain of the extended generator. To circumvent this 
difficulty and allow the straightforward use of unbounded functions we use a 
truncation approach which we now describe. 

We write ASm for the extended generator of 'm. Under general conditions, 4,m is 
an extension of 4S on the set Om in the sense that if V is in the domain of 4, then it 
is in the domain of 4,m, and on Om , s V = 4V. However, such conditions do not 
concern us, as we do not require that Sm extend 4. 

Typically, the domain of 4,,m will give us a rich choice of functions for test 
functions. Three typical examples are: 

A. If X is discrete, then the domain of the extended generator for the process (2) 
includes any finite-valued function on X. This fact is used in Theorem 7.1 below 
which gives criteria for exponential ergodicity for a Markov process on a countable 
state space. 

B. If 0 is an Ito process then the domain of 
4,m 

contains C2 (the class of 
functions on X x R + with continuous first and second partial derivatives), while the 
domain of sd may be far smaller: see Section 8 and [19], [17]. 

C. Let lm denote the weak infinitesimal generator for the space-time process 
{((Q', t):t E 

IER}. A measurable function V on X x 
• 

is in D(,sim), the domain of 

4mIm, if the limit 

Ex[V(Q(m, t + h)] - V(x, t) 
(5) ', V(x, t) 

_ 
lim 
hJo h 

exists pointwise and satisfies 

(6) lim Ex[im V((', 
t + h)] = ?mV(x, t). 

hJO 

If furthermore 

(7) sup Ilim V(X, t)l < 
0o, (x,t)EC 

whenever CcX x R+ is compact, then we have that D(,4m) c D(,4m) (see [19]). 
We note that when (7) holds, as it typically will in applications where the generator 
is derived through the form (5), then the integrability condition (4) is satisfied for 
the truncated process Om since the time-integral is almost surely bounded. 

Throughout the remainder of this paper we assume that V :X-~ - is a positive, 
measurable function which is in the domain of Slm for all m. Such a function 
V:X-- R+ is called a norm-like function if V(x)-- oo as 

x--- 
m; this means that the 

level sets {x :V(x) B} are precompact for each B >0. Functions on 11k which are 
norm-like include the Euclidean norm 

I1"11 
and any monotone, unbounded function 

of 
I*I'I. 
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All of our criteria for stability will rely on a detailed usage of Dynkin's formula, 
which is a direct consequence of the optional stopping theorem [10]. 

Dynkin's formula. Let r be a stopping time for the right process 0, and suppose 
that V:X x R+-* is in the domain of the extended generator 4m. Let 
Tm A min {m, r, Tm}. Then 

(8) 
Ex[V(Q•mm, 

rm)] = V(x, 0) + Ex ~[ imV(t, t) dt , xE X. 

If r is bounded by a fixed deterministic constant, then we take rm = T A Tm in 

Dynkin's formula without further comment. 
A simple but important consequence of Dynkin's formula is the following 

comparison theorem. 

Theorem 1.1 (comparison theorem). Suppose that 0 is a non-explosive right 
process, and that V, g+ and g_ are positive measurable functions. If for each m, 

1m V ' g+ - g_ on Om then for any x E X, sE R +, 

PsV(x) + Ptg_(x) dt V(x) + fPtg+(x) dt. 

Hence for each x X, 

lim sup - P'tg _ (x) dt 

- 

lim sup - P'g+(x) 
dt 

s-300 S s---- S o 

lim inf - P'g_(x) dt 5 lim inf - P'g+(x) dt. 
s-300 S S-300 S o 

Proof. For fixed s E R+ denote sm = s A Tm. It follows from Dynkin's formula 
that for x E O,, 

Ex[V('Qm')] = V(x) + Ex Am V (t) dt 

(9)f 

- 

V(x) + 
Ex[f 

{g+(t) - 

g_ 

A 

m(~t)} dt] 

where g_ A m denotes the minimum of g_ and m. We bound g_ in this way to avoid 
a possibly infinite negative term. 

By (9) and the conditions of the theorem, whenever x E Om, 

Ex[V(•m.)] +Ex Ag_ m(4,) dt 
- 

V(x) +Ex fg+(tb ) dt 

- 
V(x) + Ex[ g+(Qit) dt . 
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Since from non-explosivity smTs as m -- *c, we have from Fatou's lemma 

P"V(x) 
<- 

lim inf Ex[V(Q~m)]. m---)oo 

Combining these inequalities, we may apply the monotone convergence theorem to 
obtain the result. 

To apply Dynkin's formula in the comparison theorem we relied on the fact that, 
under non-explosivity of 0, we have rm --* r as m -- oo, where in this instance r = s. 
Since so many of the results of this paper crucially depend on non-explosivity in this 

way, we first give a general sufficient condition under which non-explosivity holds. 

2. Criteria for finite escape times 

In this section our aim is to find conditions which ensure that the sample paths of 
0 remain bounded on bounded time intervals, so that the process is non-explosive. 

Our first criterion on the extended generator of the process 0 is the following. 

(CDO) Condition for non-explosion. There exists a norm-like function V and a 
constant c >0 such that 

4m mV(X) _ cV(x) x E Om, m EZ ,. 

It is easy to see that if the apparently weaker bound 

AsmV(x) icV(x) +d XEOm, m EE+, 

is satisfied for constants c, d ?0, then (CDO) is satisfied: if c >0, consider the 
norm-like function V + d/c, which satisfies (CDO). 

The abbreviation CD stands for continuous drift. The conditions CD we introduce 
will in general have matching discrete drift conditions DD in [24], but explosion is 
not a possibility in discrete time so CDO has no such analogue. We see in the next 
result that (CDO) puts an upper limit on the rate of positive drift for the process. 

Theorem 2.1. If 0 is a right process and (CDO) is satisfied, then 

(i) ? = oo, so that 0 is non-explosive. 
(ii) There exists an a.s. finite random variable D such that 

(10) V(Q~,) - D exp (ct), 05 t < . 

The random variable D satisfies the bound 

Px{Di -a} - 

V(x) a > O, x EX. 
a 

(iii) The expectation Ex[V(Q~,)] is finite for each x and t, and the following bound 
holds: 

Ex[V(Q,)] = 
exp (ct)V(x). 
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Proof. We first apply the extended generator 4lim to the function 

g(x, t) A V(x) exp (-ct) to obtain from the product rule that for x E Om 

sm g(x, t) = exp (-ct)[smV(x) - cV(x)] 

<0. 

The product rule is easily justified, given our integrability condition (4). From 

Dynkin's formula we have, with tm = Tm A t, 

(11) Ex[g(O, tm)]= g(x, 0) + Exf fsmg((sY, s) ds 

-g(x, 
0) = V(x). 

Let M, = exp (-ct)V(Q•)1(Tm >? t). We show that the adapted process (M,, Jt) is a 

supermartingale. Fix s < t, and consider first the event {s > Tm }. On this event 

M, = Ms = 0, and hence also 

E[M, I 
Fs 

] = Ms on {s > Tm}. 

On the event {s _ Tm} we use (11) to estimate 

E[M, jI '] = exp (-ct)E()m[V(•m"_s)l{Tm -t- 
s}] 

- exp 
(-cs)E4,m[g(D7_s)m, 

(t - s)m) 

- 
exp (-cs)V(Q7m) = Ms 

and so we have the desired supermartingale property. By Kolmogorov's inequality, 

Px 
sup M, 

aI} 
< 

V(x) t_->0 a 

Hence, by the definitions, 

Px sup {V(Qt,)exp(-ct)} 
a V(x) a > 0. 

Oilt < Tm a 

Letting m -- oo and applying the monotone convergence theorem gives 

Px sup {V(Q~) exp (-ct)} 

-a} 

V(x) a >0. 

Since V is norm-like, we conclude from the definitions that 0 = c, which proves (i). 
The bound above then implies (ii). 

To prove (iii) we return to (11). From this bound, Fatou's lemma and 
non-explosivity we have 

Ex[exp (-ct)V(Qw,)] lim inf Ex[g(()m, tm)] = V(x), 

which proves (iii). 
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A somewhat weaker version of this result is given as Theorem 4.1 of [17] for 
diffusion processes. When X is countable, then the recent Theorem 1.11 of Chen 

([6]; also [5] in Chinese) gives (i), as does Theorem 2.3 of [34] using the much 

stronger condition that (CDO) holds with c 
_ 0. The theorem is also closely related 

to Lemma 1 of [16] in the jump-linear case, and to Lemma 1 (p. 37) and Theorem 8 

(p. 53) of [19], which uses a stronger form of the Lyapunov function V on X, again 
with (CDO) holding with c 

_ 0. 

3. Criteria for recurrence 

3.1. Criteria for non-evanescence. In [24] we developed the concept of non- 
evanescence; we say that a trajectory converges to infinity, denoted { ' --oo, if 

(D, E Cc for any compact set C cX, and all t E R+ sufficiently large, and 0 is called 
non-evanescent if Px {•( oo} = 0 for each x EX. 

Our next result gives a criterion on the extended generator for the process 0 to 
be non-evanescent. This condition will also imply Harris recurrence under suitable 

continuity conditions on 0. 

(CD1) Condition for recurrence. There exists a compact set CcX, a constant 
d > 0 and a norm-like function V such that 

Am V(x) -5 dlc(x), x E Om, mE E,. 

Theorem 3.1. (i) If 0 is a right process and (CD1) holds then 0 is non- 
evanescent. 

(ii) If 0 is non-explosive and if 

Am V(x) : dlc(x), x E Om, mE E +, 
then even if V is not a norm-like function we have the bound 

Ex[V(Q~,)]-5 V(x) + td 

for any x and t. 

Proof. The second result is an immediate consequence of the comparison 
theorem. To prove (i), first observe that (CD1) implies (CDO), and hence from 
Theorem 2.1 we see that the process is non-explosive. Suppose now that 

Px,( 1--lo} > 0 for some x EX. Then since C is compact, there exists r R+ such 
that 

PxI{{I E 
Cc:t>-r} 

n {- I}} >0. 

Hence defining the probability i as 

{B} Px{,E B I Q, ECC}, B E 3(X) 

we have by the Markov property 

(12) P, { {, c: t 0 } n 
{-- o }} > 0. 
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We now show that (12) leads to a contradiction. From Dynkin's formula with 

S= t A rc, non-explosivity and Fatou's lemma, we get that 

Ex[V(QDt•A^)]= 
Ex[limminf V(Qa')] 

< lim inf 
Ex[V(Q,,,)] m-----O 

-V(x) 
+lim inf ExfismVg((Ds)ds 

= 
V(x), x EX. 

For all t >s we have V(Q^tAr) = V(Qs^ ,r) on the event {Trc? s}, while for rc > s we 

may estimate 

E[V(4)tAT()I J's] 
=E4JV((DtsA,, ,)J 

Hence 
{V(Qs^AI), - :s o0} is a convergent supermartingale. For any initial 

distribution, there are two possibilities for the limit Vo. Either rc < oo, or 
rc 

= oo so 
that 

Vo = lim V(D,) < o. 
t--o* 

Since V is norm-like, this shows that 

P,{{ --Mo}c U {rc < }} 1. 

This obviously contradicts (12), and completes the proof. 

The result is the continuous-time generalization of Theorem 4.5 of [24], and in the 
case where X is countable, is essentially given (with a far different approach) as 
Theorem 4 of [36]. It is related to the jump-linear result in Theorem 2 of [16]. 

3.2. Criteria for Harris recurrence. We showed in [24] and [25] that, under 

appropriate continuity conditions, non-evanescence is equivalent for both discrete 
and continuous time processes to the seemingly far stronger property of Harris 
recurrence, defined by either of 

(i) there exists some a-finite measure M, such that whenever I {A } > 0 

PxTA < 00} 1; 

(ii) there exists some a-finite measure q, such that whenever q{A} > 0 

Px (7A = o) 1. 

These are shown to be equivalent in Theorem 1.1 of [22]. Note that Harris-recurrent 
chains are irreducible, whereas non-evanescent chains need not be. To link the two 

concepts, recall from [25] the definition of an embedded discrete-time chain sampled 
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according to a probability distribution a on 
R+: 

this is governed by the Markov 
transition function Ka defined by 

(13) Ka =a fP'a(dt). 

Using the idea of sampled chains we define petite sets: a non-empty set C E 2(X) is 
called qa-petite if qa is a non-trivial measure on B(X) and a is a probability 
distribution on (0, oo) which satisfy the bound Ka(x, -) q~ (.-) for all x E C. 

The degree of stability of 0 is shown in [25] and in [22] to depend critically on the 
distribution of rc for petite sets C. Here, we first note the following result. 

Theorem 3.2. If all compact subsets of X are petite and (CD1) holds then 0 is 
Harris recurrent. 

Proof. This follows from Theorem 3.1, in conjunction with Theorem 3.2(a) and 
Theorem 5.1(i) of [25]. 

We can achieve the same result using a seemingly different property of sampled 
chains. Recall from Section 3 of [25] that a right process is called a T-process if for 
some distribution a, the kernel Ka satisfies Ka(x, A) ? T(x, A), where the function 

T(-, A) is lower semi-continuous, for each A E 21(X), and where T(x, X) is non-zero 
for all x X. 

The condition that all compact subsets of X are petite is shown in Theorem 5.1(i) 
of [25] to be, for non-evanescent processes, equivalent to the assumption that 0 is 
an irreducible T-process. This immediately gives the following result. 

Theorem 3.3. If (CD1) holds for an irreducible T-process then ' is Harris 
recurrent. 

Several examples of processes shown in [25] to satisfy the T-process conditions, 
including diffusion processes, storage models and risk models, will be analyzed in 
later sections. 

4. Criteria for positivity and xr(f) < 0 

4.1. A positive recurrence criterion. In the previous section we worked from the 

topological condition of non-evanescence to the probabilistic condition of Harris 
recurrence. In developing still stronger stability results, it is more rewarding to start 
from the Harris recurrence viewpoint. It is well known (cf. [1], [12]) that if 0 is 
Harris recurrent than an essentially unique invariant measure .r exists. If the 
invariant measure is finite, then it may be normalized to be a probability meaure; in 
this case E is called positive Harris recurrent. 

The following result follows from Theorems 1.1 and 1.2 of [22]: it shows that 
bounds on the hitting times of petite sets will be crucial in characterizing positive 
recurrence, and we will then seek ways to develop these bounds through 
Foster-Lyapunov criteria on the generator. 
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Theorem 4.1. Let C E $3(X) be a closed petite set, suppose that Px(zc < } - 1, 
and that for some 6 > 0 

(14) sup Ex f (4Q,) dt <c o, xEC IOI 

where rc(6) = 6 + 06rc, and 
f_ 

1. Then 0 is positive Harris recurrent and 

Jr(f) < co 

The following Foster-Lyapunov drift condition, which is stronger than (CD1) in 
the special case where V is norm-like and C is a compact set, will be shown to yield 
a criterion for positive Harris recurrence regardless of the structure of V. 

(CD2) Positive recurrence condition. For some c, d > 0, f _ 1, a measurable set 

C, and V >O0, 

-m V(x) -cf(x) + dlc(x), x E Om, mE 7+. 

Note that for positivity we do not require V to be norm-like, although without this 

assumption we will need to verify non-explosivity separately. 
As in [24] we may also consider time-varying test functions. We do not give these 

results in detail here in order to make the results more transparent; but for this one 
case we note that for a time-varying function V:X x R+--. X the criterion for 

positive recurrence becomes the following. 

(CD2') For some c, d > 0, f 1, and a measurable set C, 

smV()t, t) < -cf(Qd,)+ d1c(Dt), 

when O > t > O, m E Z+. 

Extensions of all our results to the time-varying case are straightforward given the 
results here and in [24]. 

Theorem 4.2. Suppose that 0 is a non-explosive right process, that (CD2) holds 
for 0 with C a closed petite set, and that V(x) is bounded on C. Then the process is 

positive Harris recurrent, and moreover 7(f) is finite. 

This result extends Theorem 5.4 of [24] to the continuous-time case. There are 
some precedents for using (CD2) in continuous time: our result extends [36], [6] to 

general state spaces, although the method of proof is completely different, whilst the 

'asymptotic stability' results of Theorems 2 and 6 of [19] exploit a form of (CD2), 
and Condition (CD2) is also used by Khas'minskii in [17] in his treatment of 
diffusion processes. 

The proof of Theorem 4.2 first requires us to establish a range of consequences of 
(CD2) used in conjunction with Dynkin's formula and the Comparison Theorem 
1.1. 

Theorem 4.3. Suppose that I is a non-explosive right process and that (CD2) 
holds. 
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(i) For any x E X, 
6- 

0, 

(15) Ex[c( f(DQ,) dt 
- 

c-'(V(x) + d6). 

(ii) For every x 

(16) lim sup - P'f(x) dt 5 d/c. 

If an invariant probability exists, then 3r(f) 5 d/c. 
(iii) For every x 

(17) lim inf -1 Pt(x, C) dt 

= 

c/d. 

If an invariant probability exists, then 
7(C)- c/d. 

Proof. (i) It follows from (CD2) and Dynkin's formula that 

0 5Ex[V(QD)] V(x)>-Ex cf(,)tdt , x E On n Cc; 

hence by the monotone convergence theorem, non-explosivity, and the fact that 

Px(rc = 0) = 1 for x E C, 

Ex[ cf (,) dt] 5 V(x), x EX 

so that (15) is proved in the special case where 6 = 0. 
We have by the Markov property and this inequality 

Ex[f cf (t,) 
dt] = P(x, dy)Ey[f cf (Q) dt - P"V(x), 

f6I 

and from the comparison theorem with g_ = cf and g+ = d1c we have 

(18) P6V(x) + Ex cf (D,) dt 
- 

V(x) + Ex [ dl{, E C} dt] 
. 

Combining these bounds, we have 

Ex [ cf (D) dt] 
- 

V(x) + dEx 1{[f E C} dt 

which gives the bound (15) for arbitrary 6. 
(ii) The bound (16) follows from the comparison theorem on letting g_ = cf and 

g? 
= dlc. If r is any invariant probability, then by stationarity and Fatou's lemma 
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we have for each fixed 0 < L < oo, 

.r(f A L) = lim sup 1 fP'(f A L)(x) dt r(dx) 

-f{ 

lim sup1 fPt(f A L)(x) dt r(dx) ----oo s 

?-(d/c)-(X) 
from (16). Letting L oo and applying the monotone convergence theorem compl- 
etes the proof. 

(iii) If (CD2) holds then the conditions of the comparison theorem are satisfied 
with g_ - c and g+ = d1c. We then have for each x, 

S d ' 
c= lim inf- JP'(x, C) dt 

s-'o 
S o 

which proves (17). The bound on 7r(C) is then proved using Fatou's lemma as in 

(ii). 

Result (i) was essentially given as Theorem 7.3 of [17] in the case of diffusions on 
Euclidean space. 

Applying Theorem 4.3 and the characterization in Theorem 4.1 we can give the 

following proof. 

Proof of Theorem 4.2. From Theorem 4.3(i) we see that rc < o a.s. [P.], and 
that the bound (14) holds for any 6. Hence Theorem 4.1 gives the result. 

Putting this result together with Theorem 5.1 of [25] gives immediately an 

important special case for T-processes. 

Theorem 4.4. If (CD2) holds for an irreducible non-explosive T-process with C a 

compact set and with V bounded on C, then 0 is positive Harris recurrent and 

,7r(f) < 00. 

4.2. Existence of invariant measures and boundedness in probability. Even 
without irreducibility, the methods above may be used to prove the existence of an 
invariant probability for a Feller Markov process or a T-process. Our first result 
extends Theorem 2 of [37] from discrete-time to continuous-time processes. 

Theorem 4.5. Suppose that 0 is a non-explosive right process with the Feller 

property: that is, P'g is a bounded continuous function whenever g is bounded and 
continuous. If (CD2) holds for some compact set C c X, then an invariant 
probability exists, and r(f) - d/c for any invariant probability xr. 

Proof. A result of Foguel [11], generalized by Stettner in [30], states that for a 
Feller process, there are two mutually exclusive possibilities: either an invariant 
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probability exists, or 

1' 
(19) lim sup - 

1 
P"s(C) ds = 0 

r--- r Jo 
for any compact set Cc X, where the supremum is taken over all initial 
distributions p on the state space X. 

The existence of an invariant probability follows directly from Theorem 4.3(iii) 
and (19), and the bound on xr(f) follows from Theorem 4.3(ii). 

We now consider T-processes in the reducible case. 

Theorem 4.6. Suppose that 0 is a non-explosive T-process. If (CD2) holds for 
some compact set C c X, then for some n > 1 

X= H, + E 
i=l 1 

where each Hi is a positive Harris set and Px{(?E = 00} = 0 for all x. For any invariant 

probability jr we have xr(f) < c/d. 

Proof. By Theorem 4.3(i) 0 is non-evanescent, and hence the Harris part of the 
Doeblin decomposition in Section 4 of [25] is non-trival. Each Harris set is positive 
by part (iv) of the Doeblin decomposition theorem 4.1 of [25], and Theorem 4.3(iii). 
In view of (ii) of that decomposition theorem, and the observation that 7r{C} : c/d 
for any invariant probability by Theorem 4.3(iii), the number of Harris sets must be 
finite. 

The proof that 7r(f) is finite follows from Theorem 4.3(ii). 

For T-processes, (CD2) also provides a criterion for a topological stability 
condition which applies, as does non-evanescence, even in the reducible case. 

In [25], the process 0 was defined to be bounded in probability on average if for 
each initial condition x EX and each E > 0, there exists a compact subset C c X such 
that 

lim inf - Px(Q, E CI ds ; 1 - E. 
t---+ tfIc 

Conditions implying boundedness in probability on average are given in Theorem 

3.2(b) of [25]. These immediately give the following result. 

Theorem 4.7. Suppose E is a non-explosive T-process. If (CD2) holds for some 
compact set C cX then ' is bounded in probability on average. 

4.3. Explosive processes under (CD2). One might hope that the stronger drift 
condition (CD2) implies the process is non-explosive even when the test function V 
is not norm-like. 
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This is not true. When X is countable, then Theorem 2.3 of [34] provides an 

example of an irreducible birth and death process satisfying (CD2) with V not 
norm-like, for which non-explosivity fails. On a continuous space, we can construct 
the following even simpler counterexample. 

Let 0 be a jump-deterministic process on [0, oo) which follows the deterministic 

trajectory w(t) between the time points {ti} of a Poisson process of rate A. Suppose 
that w is a continuous, strictly increasing function on [0, 1) with w(O) = 0 and 

w(t)--oo as t-->1. Let 0 jump to {0} at ti, t,,+S= w(s) for ti s 
<t+I+, 

and the 

process is killed at ? = limm., Tm, as usual. Clearly, P0(" = 1) = exp (-A) > 0; and 
indeed, by a geometric trials argument Px( < oo) = 1 for all x. Now let V: R-+ 
[0, 1] denote any smooth increasing function for which V(x) = 1 for x 

_ 
1 and 

V(O) =0. For any m, we have sm V(x) = -A for x 
_ 1, and so, although 0 is 

explosive, (CD2) holds for this bounded V. 
In most applications the test function V in (CD2) will be norm-like, in which case 

(CDO) is satisfied and then Theorem 2.1 immediately implies that 0 is non- 

explosive. We conjecture that a process of 'rapid' explosion, with Ex(?) getting 
vanishingly small for x near infinity as in this example, is the only way for explosion 
to occur under (CD2). 

5. Criteria for convergence in total variation 

The Markov process 0 is called ergodic if an invariant probability 7r exists and 

lim IIP'(x, .) - x| = 0, x E X. 
t--+ o 

In [25] we saw that if any one skeleton chain is irreducible, then positive Harris 
recurrence and ergodicity are equivalent concepts. This result leads us to define the 
following condition on the chain 0: 

(91) The chain 0 is a non-explosive right process, all compact sets are petite for 
some skeleton chain, and (CD2) holds for some compact set C with V bounded on 
C. 

We immediately have the following result. 

Theorem 5.1. Suppose that (Yf) holds. Then 0 is ergodic. 

Proof. From Theorem 4.2 we see that 0 is positive Harris recurrent, and from 
Theorem 5.1(i) of [25] we know that the skeleton chain is irreducible when all 

compact sets are petite for the skeleton. These two properties are shown to imply 
ergodicity in Theorem 5.1 of [25]. 

Observe that although the conditions of this theorem imply that ir(f) is finite, 
where f is the function used in (CD2), we cannot in general say if Ex[f(I,)] 
converges to ir(f) as t-* oc; we do not even know if this expectation is bounded in t. 
This is in contrast to the discrete-time situation. 
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We now search for criteria for convergence of the expectation E[f(,,)] to a 

steady state value. To approach this question we need the concept of the f-norm 

I•1 M1. For any positive measurable function 
f_- 

1 and any signed measure M on 

9Y(X) we write 

IIMllf = sup I~i(g)l. 

In [24] we showed that the discrete-time analogue of (CD2) implies f-norm 
convergence of the distributions for each initial condition: that is, 

lim IIP"(x, -) - .ll7 = 0, x EX. 
n---oc 

In particular this shows that this expectation does converge for discrete-time 

processes. In continuous time we can at least show that under (9S) there are 
functions related to f whose expectations do converge without further conditions. 
Let f 

- 
1 and define for any A the function fA by 

fA(x) = P"f (x) ds. 

Theorem 5.2. Suppose that (9) holds. If 7r denotes the unique invariant 

probability measure for 0 we have 

lim IIP'(x, .) - rllf, = 0, Vx EX. 
t--- oc 

Proof. The chain is ergodic and so ir exists from Theorem 5.1. From Theorem 4.3 
the hypotheses of Proposition 6.2 of [25] are satisfied, and the result holds. 

There are a number of ways in which we can ensure that the desired limit holds in 
the f-norm itself under the conditions of Theorem 5.2. 

Theorem 5.3. Suppose that (9) holds and that one of the following conditions on 

f holds: 
(i) for some constant 6 > 0, and constants cb, d < oo, 

(20) P"f 5 cf + d,, 0O 5s 5 6; 

(ii) the test function V = 4(f) for a strictly increasing, convex function 
~:" R + 

R +. 
(iii) for some c, d < c, 

m f (X) - 
cf(x) + d, x E Om, mE• 7/. 

Then 0 is ergodic and letting ir denote its unique invariant probability we have 

lim IIP'(x, 
") 

- |761f = 0, x E X. t---* a 
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Proof. The first result follows from the argument used in Theorem 4.2 together 
with Theorem 6.3 of [25]. To prove (ii) we apply (CD2) and the comparison 
theorem to obtain the bound P"V 5 V + ds. Since 0 is strictly increasing, its right 
derivative is bounded from below on [1, co). From this fact and Jensen's inequality 
we may find a finite constant b such that 

P"f < 0-l(O(f) + ds) 5f + bds, sE R 

which shows that (20) is satisfied. The second result thus follows from (i). 
To see that the third condition also suffices, note that since f 

= 
1 we may assume 

without loss of generality that d = 0. By Dynkin's formula applied to the function 

exp (-ct)f together with the now standard use of Fatou's lemma we obtain the 
bound 

P'f : ec'f, tt . 

This bound together with (i) immediately implies the result. 

Theorem 5.3(i) leaves open the question of how Equation (20) may be verified. 
One method is by establishing (ii). This relationship between f and V is satisfied in 

many queueing models, where V is typically equal to fq for some q > 1 (see the 

examples below and [21]). If this condition fails, then (iii) is also useful if the 
function f is sufficiently smooth. 

Convergence in f-norm has recently been explored at some length in the case of 
discrete-time countable space by Hordijk and Spieksma [15], [29], and it is of 
considerable interest to have results which enable the stronger form of convergence 
to be used. Theorems 5.2-5.3 go some way in this direction: the general result is still 
an open question. When the convergence is exponentially fast, however, we can 

provide a full solution, and this is done in the next section. 

6. Criteria for exponential ergodicity 

Suppose that the Markov process 0 is positive Harris recurrent with invariant 
measure 7r. For a function 

f- 
1 we say that 0 is f-exponentially ergodic if there 

exists a constant f < 1 and a finite-valued function B(x) such that 

j|P'(x, -) - |rllf 
:5 B(x)p' VtER 

x, xX. 

This form of ergodicity is studied in [31], where it is shown that under some 

continuity conditions (in t) on the semigroup Pt, exponential ergodicity of the 

process 0 follows from the geometric ergodicity of the embedded skeletons or of 
the resolvent chains. 

Here we substantially improve on the results of [31] and show that a strength- 
ened version of (CD2) provides a criterion for an exponential rate of convergence 
in the f-norm ergodic theorem, without any of the side conditions in Theorem 5.3. 
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(CD3) Condition for exponential ergodicity. The function V is norm-like, and for 
some c > 0, d < oo, 

s~m V(x) - -cV(x) + d, x E O.m 

Theorem 6.1. Supose that 0 is a right process, and that all compact sets are petite 
for some skeleton chain. If (CD3) holds, then there exists f < 1 and B < 00 such that 

IIP'(x, 
") 

- rllf 
5 Bf (x)P', t R+, x E X, 

with f = V + 1. 

Proof. To begin, observe that (CD3) trivially implies (CDO). Hence by Theorem 
2.1 the process is non-explosive. We first apply the extended generator '4m to the 
function g(x, t) A V(x) exp (ct) to obtain from the product rule 

Sm g(x, t) = exp (ct)[Si•mV(x) + cV(x)] 

Sd exp (ct). 

By Dynkin's formula and the same argument used in the proof of the comparison 
theorem it follows that for all t E R + and x X, 

exp (ct)P'V(x) = E[g (Q,, t)] - V(x) + lim inf 
Ex m sig( s, s) ds 

SV(x) + d exp (cs) ds 

- 
V(x) + (d/c) exp (ct). 

Thus for any distribution a on R + with a(O)< 1, 

(21) KYV 5 AV + d/c 

where A = jo exp (-ct)a(dt) < 1. 
Under the present hypotheses, for some 6 the 6-skeleton with transition law P' is 

irreducible and aperiodic, and all compact subsets of X are P'-petite. Choosing 
Ka = P6 in (21), by Theorem 6.3 of [24] there exist p < 1 and R < o such that 

IIP" (x, 
") 

- Illif 5Rf(x)p", n E+, x EX, 

where f (x) = V(x) + 1. 
For arbitrary t E o + we may write t = n6 + s, with s E [0, 6), to estimate 

IP'(x, -)- rlf 
= sup Pn,+sg 

- g dr 
Igl Ef I Jf I 

f ps(x, 
dy) 

IJP"n6(y, 
-)- 

-ll 

_ 
Rp"P"f(x) 

< Rp"(V(x) + d/c + 1) 
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where the last inequality follows from (21), this time by choosing a = 6,; and the 
result is proved. 

Condition (CD3) is frequently satisfied under any conditions where (CD2) can be 
checked. It is clearly the most useful of our conditions, in that it not only provides 
positive Harris recurrence and even exponential ergodicity, but also provides 
automatically the bounding constant in the f-norm convergence. 

7. Application: chains with countable state space 

Before giving more specific examples, it is worthwhile making these results a little 
more explicit for countable spaces, since the technical conditions are then much less 
onerous and the results more transparently stated. Because any function on a 
discrete state space is continuous, it trivially follows that a Markov process whose 
state space is discrete is a T-process. When the derivative exists, the extended 
generator Am for the stopped process may be represented by a matrix Q where 

qij =p p(0) for i E Om. 
The approaches above enable us to provide stronger results than those currently 

available, even in discrete state space. We give just the exponential ergodicity result 
here, for ease of use and interpretation: the next theorem is a direct consequence of 
Theorem 6.1, and extends Theorem 3(ii) of [36], whilst also showing that the 
hypotheses of Theorem 1.18 of Chen [6] give much stronger conclusions than those 
he draws. 

Theorem 7.1. Suppose that X = Z, and 0 is irreducible. If there exists a function 
V such that V(j)--> oo as j--> oo, satisfying for some c, d < oo 

SqiiV(j) 5 -cV(i) + d, i EX, 

then there exists f < 1 and B < oo such that 

IIP'(i, ) - | 5 Bfi)t', tE• 
R, i X, 

with f = V + 1. 

8. Application: a controlled linear system 

In Section 3.3 of [25] we considered the diffusion process 
m 

(22) dD, = Y(Q,) dt + 
' 

Xi(D,)o dB, 
i=1 

whose generator is a second-order differential operator of the form 

(23) = rY+ ? X. i=1 
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Since the sample paths of a diffusion are continuous, it follows that for the stopped 
process, any function V :X-* R+ with continuous first and second partial derivatives 
is in the domain of s'm and on Om, 

m 

mV = YV + 
XiV. i=1 

Using this identity we now apply the results of the paper to obtain new results for a 
classical problem in the theory of passive linear systems. 

Let X = ", and define 0 as the state process for a linear system under 

memoryless non-linear control, following [38], by the specific form of (22) 

(24) d•, 
= F1, dt - bo(cTQt,) dt + G(Q,) dw,. 

From (23) we see that for any V with continuous first and second partial derivatives, 
the extended generator associated with (24) may be written, for any truncated 

process ,m, as 

Vb(cTx)T 
a(x) 1 X 2V(x) (25) &mV(X) = [Fx - bc + [G(x)G(x) 

ax]i, ax 2 
,,j x, 8x 

We impose the following conditions on the parameters of (24) so that 0 is a 

T-process, and the freely evolving system (with wt,=0) will be exponentially 
asymptotically stable. This fact enables us to construct a test function of the form 

(CD3), which will be shown to imply geometric ergodicity for the state process. 

(NL1) The function G is C", and there exists a constant B for which 

0 < G(x)G(x)T - BI, x EX. 

(NL2) All the eigenvalues of F have negative real parts. 

(NL3) The function x4(x) is positive for all x sufficiently large; and q is C" with 

q5' bounded on R. 

(NL4) There exist two non-negative constants y and K such that y + K >0 and 

Re (y + ioK)CT(iwl 
- F)-'b > 0 

for all real co. 

In [38] it is shown that 0 is positive Harris recurrent under conditions related to 

(NL1)-(NL4); but we can actually say far more. 

Theorem 8.1. If (NL1)-(NL4) hold then 0 is geometrically ergodic. Letting ir 
denote its invariant probability, we have for some B < 03, / < 1, 

IlIP'(x, ) - tllf h Bf(x)', x 2X, te [ , 

with f(-) = I-|2 + 1. 
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Proof. From [25] we have that by (NL1) the skeleton P' is its own irreducible 
continuous component for each A > 0. In [38] the function 

V(x) = xTPx +KJ 40(s) ds 

is considered, and by appropriate choice of P >0 and Q >0 it is shown under 
(NL2)-(NL4) that 

av(x) T [Fx - bP3(cTx)]T (x) -x 
Qx, x 

EX 

and 

a2V(x) S[G(x)G(x)T]i, 
• -2V(x) 

trace [G(x)G(x)TP] + - K IG(x)TC12 
, (cTx). j,I axi axj 

By (25), (NL1), and (NL3) we have for some c > 0, d < o, 

SVm(x) -x TQx + L - -cV(x) + d. 

Hence the geometric ergodicity result follows as an application of Theorem 6.1. 

9. Application: storage processes with general release rule 

Many common processes in continuous time occur in the operations research 
area, and we deal with a number of them below. Processes much more general than 
those we consider on a general space are shown to be right processes in [8], [9], and 
our results will in general hold for such processes: we do not pursue the details here. 

In [13], [14] Harrison and Resnick construct infinitesimal generators for storage 
processes with compound Poisson input and a general deterministic release path 
between jumps of the compound Poisson process. In this section we apply the 
methods above to develop criteria for recurrence, ergodicity and geometric 
ergodicity of such storage processes. Let 

(26) t = x + A(t) - 
r(s,) ds, t> 0 

denote a general storage process as in [13]. Here {A(t), 
t- 

0} is a compound 
Poisson process with rate A and jump size distribution H(.), not degenerate at zero. 
As in [13], we assume the release function r(-) is strictly positive, left continuous 
and has a positive right limit everywhere in (0, oc). We take r(0)= 0. We assume 
further that for one and hence all a > 0 

(27) 0 < R(a) f 
[r(u)]-1 du < o. 
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It was shown in Theorem 4.2 of [25] that under (27) the Ka-chain is an irreducible 

T-process for any a with a(0) < 1. The fact that, in particular, skeletons are 

T-processes is exploited in [32] to analyze ergodic properties. Our analysis below is 
both simpler and gives more detailed results, since we can use the generator 
directly. 

In Proposition 4 of [13] and its corollary, the weak infinitesimal generator S& of 0 
is shown to satisfy 

(28) sV(x) = Ao[V(x + y) - V(x)]H(dy) - r(x)V'(x) 

where the domain of i consists of all bounded absolutely continuous functions V 
with left-continuous density V' such that r(-)V'(.) is bounded on (0, 0 ). 

Similarly, if we consider the expanding sets Om = [0, m) and the truncation Om to 
be stopped at m when 0 leaves O,, then as in the construction in [13], we get 

(29) 
"Sm 

V(x) = Af [V(x + y) - V(x)]H(dy) 

+ [V(x + m) - V(x)][1 - H(m)] - r(x)V'(x). 

It is then straightforward to see that for any increasing, unbounded V with a 
left-continuous density V' for which AsV defined by (28) exists, V is in the domain of 
the extended generator of the stopped process, and sm V(x) < :V(x) for all x, even 

though V may not be in the domain of i as a generator of 0. 
Thus we can use (29) to develop a test-function approach as follows. 

Theorem 9.1. Assume R (x) •W- 
as x -*-, and write 

(30) L(x) = Ax +y[r(u)]-' duH(dy). 

(i) If L(x) _ 
1 for all x 

- 
xo, then 0 is Harris recurrent. 

(ii) Suppose that for x ? xo, L(x) 5 1 - e for some E > 0; then 0 is Harris 

ergodic, and 

|IP'(x,-)- .i|II-*0 
for all starting points x. 

(iii) Assume that for all x 
= 

x0, L(x) _ 1 - E, and for some c* > 0, D < o, 

(31) sup 7exp c[* [r(u)]- du H(dy) = D < . 

Then 4 is geometrically ergodic, and for some constants B < 0, f < 1 

IIP'(x, 
") 

- r|ll |, 
Bf(x)•'t 

with f(-) = exp (arR(-)). 
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Proof. (i) We use V(x) = R(x) in (29), and have that for x 
--xo 

sR(x) -5 A [r(u)]-1' du)H(dy) 
- 1 : 0; 

since R(x)---oo, x---o, the result follows from Theorem 3.3. 

(ii) From Theorem 5.1 it is enough to prove that (9I) holds. But exactly as in (i), 
if L(x) - 1 - Ef(x), we have (CD2) holding for each m, and x 

_-xo. 
To see that drift 

away from the origin is controlled, note that we have R bounded on compacta since 
it is continuous. Moreover, for x 

_xo 

,sR (x) A(x+y [r(u)]-1 du)H(dy) - 1 

(32) [r(u)]-' du + f [r(u)]-' du H(dy) - 1 

- 
AR(xo) - E, 

and so we have Harris ergodicity from Theorem 5.1. 

(iii) Choose the test function Vc(x) = exp (cR(x)), where c > 0 is to be selected 
later. Then from (29) 

,m Vc(x) • 
AO 

[exp (cR(x + y)) - exp (cR(x))]H(dy) - c exp (cR(x)) 

= cV(x){Afc- [exp (c[R(x + y) - R(x)]) - 1]H(dy) - 
1}. 

From Taylor's theorem we have 

exp (c[R(x + y) - R(x)]) = 1 + c[R(x + y) - R(x)] 
(33) 

+ (c2/2)[R(x + y) - R(x)] exp (5) 

where ~ 5 c[R(x + y) - R(x)]. Using this upper bound for ? in (33), we have 

S cV(x) A[R(x + y)- R(x) - 
1IA]H(dy) 

(34) 0o 

+ 
- [R(x + y) - R(x)]2 exp (c[R(x + y) - R(x)])H(dy) . 

Now for x >-xo, as in (ii) the first integrand in (34) is less than -e, and is bounded 
for all x 5 xo as in (32). Using the simple bound x2 E 2A-2 exp (Ax), and choosing 
A = c*/2, c < A, we have the second integral in (34) bounded by 

2A-2 exp (c*[R(x + y) - R(x)])H(dy) 

_ 

2A-2B 

if x 
-xo, 

and bounded as in (32) for x - xo. Now choose 0 
- 

c < eA2(2BA)-'. Then 
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in (34), for x - xo, 

-S m Vc(x) 5 -(cE/2)Vc(x), x 
- 

xo, 

and mVj(x) is bounded, x xo. The required result now follows from Theorem 
6.1. 

In most cases in the literature, r(x)--- oo as x---> ; cf [7], [2], [3]. It is possible to 
assume the weaker condition, covering these practical cases, that for some y > 0 

(35) lim inf r(x) 
- y. 

x----•O 

The case with r(u) bounded from zero in this way simplifies the situation. If (27) 
holds, we have R(x)--- as x---> and our recurrence result (i) needs no extra 
conditions. Moreover, in this situation we can replace the condition (31) with the 

single uniform condition 

(36) fexp (c*y)H(dy) < 00, some c* > 0. 

In [3], Section 7, it is shown that (ii) implies positive recurrence for general Levy 
process input: the proof uses notably deeper properties of the storage process 
structure. In [14], the conditions for Harris recurrence are not explicit, and our 
result (i) seems to be new, if not unexpected. There is a version of our geometric 
ergodicity result in [32], showing (36) to be sufficient for geometric ergodicity, for 
the constant release rate model. The bound on (iii) and the use of the f-norm is of 
course new. 

We note that, as in Section 7 of [3], the ergodicity conditions of (ii) are necessary 
and sufficient if r is monotone increasing. 

10. Application: work-modulated queues 

In [4] the ergodic properties of two forms of work-modulated queueing models 
are considered. In one of these (their Model 2), the work rate of the server depends 
on the amount of work in the system. This model is similar to that in the previous 
section, and can be analyzed similarly although in [4] the arrival rate of 
customers is also allowed to depend on the work in the system. Here we describe 
Model 1 introduced in [4] to handle situations where the service times of customers 
entering the queue also depend on the state of the system as the customers arrive. 

Consider a single-server queue where the nth customer arrives at time t,, n 
_ 1. 

We take to = 0. We let W(t) denote the work, measured in units of time, which is in 
the system at time t. Hence at time t,, the nth customer will experience a delay of 
W(t,-) before entering service. At time t,, customer n is allotted a service time S, 
which depends upon the past of the system as follows: 

P{S, neA ISo, , Sn_.1, W,:t <t,} = H(W(t,2-), A) 
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where H is a Markovian kernel on R + x h(Rj +). The arrival times {tn,:n E Z } form 
a non-stationary Poisson process with intensity A(W(t)), also depending on the work 
in the system, where A is a bounded, non-negative function with A(O) >0. We 
assume that 

P{an arrival occurs in [t, t + h] W(s):s < t} = A(W(t))h + o(h). 

Davis [9] shows that such a Markov process is a right process on RD+. Since A is 
bounded it may easily be seen that the process is non-explosive; while the fact that 
this queueing model is an irreducible T-process follows exactly as in Theorem 4.2 of 

[25] for storage models. To obtain (6) for suitable functions V we will assume that A 
is left continuous, and that the transition function H has the Feller property. 

We will use this example to illustrate how the methods introduced in this paper 
may be used to establish (i) recurrence and ergodicity; (ii) finiteness of moments of 
the steady-state work in the system; and (iii) exponential convergence of the 

expected work, and other functions of the state process. We first need to develop 
the form of the extended generator for the work-modulated queue. 

Let O,m = [0, m), m E Z, and let s/r, be the extended generator for the process 
W" defined by W' = m for t 

-T"'. 
For an initial condition x E O,, we have 

Tm' r > t on the event {no arrivals occur in [0, t]}. From this fact and the basic 
definitions we obtain for x > t > 0, 

Ex[V(Wt)] 
= V(x - t)(1 - tA(x)) 

+ 

tA.(x)fs[0 

{O[O V(x - t + y)H(x, dy) 

+ V(m)H(x, [m - x + s, oo))4P{t E ds It, 
- 

t} + o(t). 

Rearranging terms gives 

Ex[V(Wt)] 
- V(x) V(x - t) - V(x) 

- tA(x)V(x 
- t) t t 

+ A(x) 

Vo((x 

- t + y) A m)H(x, dy) + o(1). 

This equation also holds for x = 0 on replacing V(x - t) by V(O). For differentiable 
V: R-+ - R we obtain the identity, for arbitrary x E IR+, 

Ex[V(W')] - V(x) lim = - V'(x)1{x > 0} 
4.o t 

+ 
A(x) (V((x + y) A m) - V(x))H(x, dy). 

Our assumption that A is left continuous and H has the Feller property ensures that 
the domain of 

-, 

contains 
C1(O+) 

for any finite m. Finally, for an increasing, 
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positive function V E C'(R4) we have the bound 

(37) A 
mV(x) 

5 

--V'(x)1{x 

> 0} + A(x) (V(x + y) - V(x))H(x, dy). 

With this bound we may apply the results of this paper to obtain rates of 

convergence of the process W to a stationary regime, and bounds on moments of the 

steady state queue size. 

(i) Recurrence and positive recurrence. Consider the test function V(x) = x. We 
have seen that V is in the domain of the extended generator for the stopped process, 
and 

(38) &m V(x) 5 -1 + A(x)h(x), x > O, me Z+ 

where h(x) Af yH(x, dy), x E +. Applying Theorem 3.2 we obtain the following 
result. 

Theorem 10.1. If A(x)h(x) - 1 for all x sufficiently large, then the process W is 
Harris recurrent. 

To obtain positivity this condition must be strengthened slightly in the usual way. 
The next result follows from (38) and Theorem 4.2. 

Theorem 10.2. Assume lim supx,. A(x)h(x) < 1; then the process W is positive 
Harris recurrent. 

(ii) Finiteness of moments. Here we consider the test function V(x) = x" to obtain 
bounds on the (n - 1)th moments of the steady state work in the queue. For this we 
assume that J y"H(x, dy) is uniformly bounded in x. From (37) we have, for x > 0, 

mV(X) 
: -nx-1 + A(x)( x"-'yi)H(x, dy) 

= - nxn-(1 - A(x)h(x)) + O(Xn-2). 

This and Theorem 5.3(ii) immediately gives the following result. 

Theorem 10.3. Assume lim supx,, A(x)h(x) < 1 and supxo f y"H(x, dy) < o for 
some fixed n. Then the process W is positive Harris recurrent with invariant 

probability xr, E [W'-1] < o, and 

lim IIP'(x, -) - •ll -• 0, x EX, 
t-00oo 

with f(-) A In1"-' + 1. 

(iii) Exponential ergodicity. To obtain exponential ergodicity we set V(x)= 
exp (arx), and apply (37) to obtain the bound 

(39) drm V(x) 

- 

- V(x) + A(x) V(x) (V(y) - 
1)H(x, dy). 
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Theorem 10.4. Assume lim 
supx,,, A(x)h(x) < 1 and 

supx_() 
f exp (py)H(x, dy) < 0 

for some Pf >0. Then the process W is positive Harris recurrent with invariant 

probability 7r such that 

fr(dy)exp (ay) <o 

for some a > 0. Moreover W is exponentially ergodic, and there exists f < 1, B < o 

such that 

IIP'(x, 
") 

- |rII -5 Bf(x)f3' 
with f(-) = exp cr I-I. 

Proof. By Taylor's theorem we have the bound, valid for any y E R, 

t +a2y2V(y) V(y) 
_ 

1 + ay + 2 

Hence from (39) and the hypotheses of the theorem we have, for some M < 0 and 

c > 0 sufficiently small, 

dm V(x) 
- 

- c(1 - A(x)h(x)) V(x) + a2MA(x)V(x). 

Since A is bounded, we see that the drift condition (CD3) is satisfied for all aC 
sufficiently small. This with Theorem 6.1 completes the proof. 

11. Application: risk models 

In [14], a risk model with instantaneous increase at rate r(4,) between the 

(downward) jumps of a Poisson process is defined. Assume r is continuous with 

R(o) = 0o, and that {A(t), t - 0} and r are as in Section 9. Then Proposition 4 of 

[14], and the construction (16) there show the generator of the risk process 0 is 

given by 

(40) 
,sV(x) 

= 
r(x)V'(x) - AO[V(x) - V(x - y)]H(dy) 

-AH(x, oo)[V(x)- V(0)-, 
with domain containing those bounded continuous V for which r(x)V'(x) is bounded 
and continuous, and has a finite limit as x -- 0. Note from the construction in [14] 
that, because of the continuous paths upwards 5am has a form identical to si, on 

Om = [0, m), provided we place 0 at m when the process leaves Om. Thus we can 

again relax the boundedness assumption for increasing functions V by considering 

Theorem 11.1. Define J: .-*+ 
U+ 

by 

(41) J(x) = 
A• H(x 

- 
y, )[r(y)l dy. 
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(i) Suppose J(x) 
- 

1 for x 
- 

xo. Then the risk process is Harris recurrent. 

(ii) Suppose 
J(x)- 

1 + e, e >0, for x 
- 

xo. Then the risk process is Harris 

ergodic. 
(iii) Suppose that, for x i x1, and e > 0, B < oo, 

(42) 2 [r(u)l-' duH(dy)--1 
+ e 

x-y 

(43) x [r(u)]-' du H(dy) _ B. 
x-y 

Then the risk process is geometrically ergodic. 

Proof. We first sketch the proof that Da& is a T-process. For any x, let rqx denote 
the point such that Px(Da = rx I A, =0) = 1. Suppose the support of H is un- 
bounded. Then by considering only paths for which the first jump occurs in [0, A], 
we have PA(x, B)> ? f A[1 - H(,x)]PA-'({O}, B), and this provides an appropriate 
component if H is continuous. If H has bounded support, then an iterative version 
of this construction is needed, whilst if H is discontinuous then a smoothed version 
can be used: we omit the details. The Harris recurrence and Harris ergodicity 
conditions then follow by noting that the right-hand side of (40), with V(x) = R(x), 
is given by 1 - J(s) as in (16) of [14], whilst clearly 4R(x) is always bounded. 

The geometric ergodicity is a trifle more delicate. We first note that if (42) holds, 
then (40) with V = R again implies Harris ergodicity. Now fix the test function 

Vc(x) = exp (cR(x)). Then from (40) 

4,V (x) 5 c exp (cR(x)) - A[exp (cR(x)) - exp (cR(x - y))]H(dy) 
(44) 

c exp (cR(x))[1 
- (A/c) [1 - exp (c(R(x) - R(x - 

y))) H(dy). 

The integration (44) can be expanded as in (33) to see, for some ?y 5 c[R(x) - 

R(x -y)], 

Ac'[1 - exp (-c(Rx)- R) - R(x 
- y)))]H(dy) 

(45) = A [R(x)- R(x - y)]H(dy) 

-2 (R(x) - R(x - y))2 exp (-c$y)H(dy) 

1 + e/2, 

provided c is chosen small enough, from (43), that 

(46) Ac [R(x) - R(x - y)2H(dy) 
< e. 
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When (46) holds, from (45) and (44) we have 

/rm V(x) -5 -(Ec/2)V(x), x 
--Xi 

. 

Since AmV (x) - c exp (cR(xo)), x 
- xo, the result follows. 

The geometric ergodicity condition (42) is stronger in general than the condition 

J(x) - 1 + e in (ii). However, when r(u) r, it is easy to see that they are 

equivalent, since J(x) = 1 + e entails, for all x 
_> 

x 

(47) . yH(dy) + AxH(x, r ) i-r(1 + e); 
and so if A J fyH(dy) _ 

r (so that (42) fails), then since AxH(x, o) 5 A f' yH(dy)--- 0 
as x--- >, we cannot have (47). 

In this case of constant increase, the condition (43) is equivalent to 

(48) AIr2 y2H(dy) <co. 

Intuitively, this says that all ergodic risk processes are in fact geometrically ergodic 
provided that the downward 'drift' provided by the compound Poisson process is not 
due to rare, but very large, jumps. We conjecture that (43) is not necessary for 

geometric ergodicity, and that a more delicate choice of test function may enable it 
to be weakened. 
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