
Hall B Magnet GitHub Version Control

All LabVIEW, PLC, and EPICS programs for Hall B Torus and Solenoid will be maintained through

GitHub repositories. The GitHub repositories for LabVIEW and PLC are private and can only be accessed

by members of the admin group. To be added to the admin group for a repository, users need a GitHub

account and should contact the admin group owner to be added. The table below lists repositories and

their admin group.

GitHub Repository System Admin Group Name

clas12-epics CLAS12 EPICS N/A

clas12-plc PLC for Torus and Solenoid CLAS12-PLC-Admins

clas12-crio-tor-fast Torus Fast-Daq CLAS12-cRIO-Admins

clas12-crio-tor-lv Torus LV Excitation Chassis CLAS12-cRIO-Admins

clas12-crio-sol-fast Solenoid Fast-Daq CLAS12-cRIO-Admins

clas12-crio-sol-lv Solenoid LV Excitation Chassis CLAS12-cRIO-Admins

Advantages of GitHub over JLab M Drive are that GitHub acts as an off-site backup, GitHub

allows for better version control, and the repository can easily be accessed. GitHub is maintained

external to JLab, allowing repositories to be accessed from any computer at any time via the GitHub

desktop app or github.com. GitHub also provides version control by requiring users to commit and

document changes to programs.

Users should frequently commit changes to the respective GitHub repository. Programs can be

reverted to an old version if new commit causes unforeseen issues. Major development changes should

be done in a branch repository that will be merged with the master branch after changes have been

tested.

LabVIEW:

Contact: Tyler Lemon

 When changes are made to a VI, the modified VI should be committed to the corresponding

GitHub repositories. As mentioned above, if major changes are being made, development should occur

in a branch repository and be merged with the master repository after changes are tested.

A new release should be generated on GitHub if the program deployed to the cRIO is changed.

The most recent release should be the code that is currently running on the cRIO. Version numbering for

new releases will follow semantic versioning principles. Release titles should be in the format vA.B.C,

where A is the major version number, indicating major development changes; B is minor version

number, indicating minor, backwards-compatible changes; C is patch number, indicating bug fixes or

small improvements. Determining which version number to iterate is left to the discretion of users.

 All executables created by the project file should be included when making a new release. The

table below details the executables that should be included in a release.

cRIO System Number of Executables File Extension of Executables

Torus Fast-Daq 2
.lvbitx
.rtexe

Torus LV Excitation Chassis 1 .rtexe

Solenoid Fast-Daq 2
.lvbitx
.rtexe

Solenoid LV Excitation Chassis 2 .rtexe

PLC:

Contact: Pablo Campero

The clas12-plc repository contains folders for each PLC system. The folders within the repository

are detailed in the table below. When changes are made to a PLC program, the project file should be

committed to the clas12-plc repository in the correct folder.

Users should commit both the .ACD file and a .L5X file version of a PLC program when

committing to GitHub. The .ACD file is the main project binary file. The .L5X file is an XML representation

of the binary file used to generate the PV database for EPICS. In contrast to .ACD files, .L5X files also give

an indicator of any changes made to the program.

Directory Name Description

CryoDBox PLC code for the Cryogenic Distribution Box

Docs Documentation for all PLC systems

Solenoid PLC code for the Solenoid PLC system

Torus PLC code for the Torus PLC system

EPICS:

Contact: Wesley Moore

 The clas12-epics repository houses EPICS applications, drivers, and the operator interfaces for

CLAS12. Development is done and changes are committed using “fork-and-pull” strategy. Users should:

make a copy (fork) of the repository to their GitHub account and create a separate branch for

development where changes will not affect the master branch; develop and make commits to branch in

fork; submit a pull request detailing any changes made in comments. Pull requests will be processed and

forked repository will be merged with the main branch if there are no conflicts.

Releases are made when EPICS screens are pushed live. A release contains all EPICS applications,

drivers, and operator interfaces that will be used.

