Solenoid Magnet Status Report

Pablo Campero

Detector Support Group

DSG STAFF

Contents

- Programming tasks
- Instrumentation tasks
- Documentation
- Upcoming tasks
- Conclusion

- PLC Program: controls and monitors the entire Solenoid in conjunction with cRIO and EPICS systems.
 - Consists of 11 main programs that comprise 72 routines.
 - Written on RS-Logix-5000 version 27.0.
 - Solenoid program was based on the Torus control program.
 - But several programs were modified and added with a new control logic.
 - —Main control of the PLC were programed to control:
 - Cool-down operations.
 - Magnet Energization- Ramp Down/Ramp Up.
 - Vacuum monitoring.
 - Solenoid Interlock system.
 - Cool-Down Interlocks system.
- Completed on 12/15/16

Solenoid PLC program Controller Organizer Controller Organizer PID_Controls 🚊 🕞 Overhead Controller Organizer Parameters and Local Tags Parameters and Local Tags Scheduler -- 📆 Scheduler □... (Controller Solenoid CPID_Overhead Hardware_Watchdog PID Setup Overhead . 📝 Controller Tags PV Assigner ⊨ SeastDAQ_Processing ■ Valve Interlocks Controller Fault Handler Parameters and Local Tags Scheduler Power-Up Handler Parameters and Local Tags (Cernox Scheduler Cernox_Stats ... 🗐 Ramp_Rate - Error_Fill ₩ Voltage_Taps ... Comm_Status 🚊 👼 MainTask 🚊 .. 🕞 SOE -- 🖺 Hall_Sensor Parameters and Local Tags 🖶 🕞 Overhead - Els - ∰n SOE CTS FastDAQ Processing Strain_Gages SOE_CTS_Sort PLC Comms Parameters and Local Tags Parameters and Local Tags Scheduler ⊞. GryoCon Scheduler - Cryo - 🖺 Consumed_Tags 🛓 🖳 Cryo -- 🗎 Produced_Tags CurrentLimit ... EPICS PV_ArrayFiller ➡ □■ PID_Controls □ GryoCon Evaluate Interlocks Parameters and Local Tags Line_and_24V_Power -- Scheduler - 🖺 Load_Cell ⊞... SOE - EnyoCon RampDown Monitor StringParse Software Quench 1st 🚊 🕞 Cryo Software_Quench_2nd Parameters and Local Tags Splice Temps in Magnet Interlocks - Scheduler .. ■ Vacuum - 😽 PID Calls CoolDown Rate ■ VaporCooledLeads Cryo_Interlocks MPS_Control cPID Calls -- ∰ dP_to_Liquid_Level Parameters and Local Tags Heater_Control Th Scheduler Unscheduled -- 🖀 Metal_Temps BuildCommand ■ Max:-- C-----Metal_Temp_Rate CheckCommands Pressure_Deltas Clear_EPICs_Buttons 11 main programs - PV_Assigner ConvertScaleString Temperature_Deltas CopyResponse --

■ Vacuum_Calcs ErrorHandler Vacuum_Rate Fixed_Ramp_Rates VaporCooledLead_Flow HallSensorPolarity VCL_Heater_Control Initialize

72 Routines

- cRIO Programming
 - —Solenoid-LV-cRIO (Tyler Lemon)
 - Programming based on Torus-LV-cRIO control program.
 - But it was modified according to Solenoid magnet needs.
 - cRIO programmed to perform the following control operations:
 - Set excitation voltage and current for different types of sensors that send data to the LV-Chassis.
 - Readout sensors data from solenoid magnet:
 - ★Cernox and PT 100 temperature sensors
 - **+**Load Cells
 - **+**Hall Sensors
 - Send data readout to the Solenoid PLC.
 - —Program updated to LabVIEW 2016 version.
- Completed on 02/28/17

- cRIO Programming
 - —Solenoid Fast DAQ cRIO programming (Tyler Lemon)
 - Programming based on Torus-Fast-cRIO control program
 - But modified according to Solenoid magnet requirements.
 - Programed to perform the following control operations:
 - ◆ Acquire data from the Voltages Taps in the Solenoid Magnet
 - Scale data according requirements.
 - Send readout data to the Solenoid PLC controller at 5 [Hz].
 - Send readout data to EPICS systems at 10 [KHz].
 - —Program updated to LabVIEW 2016 version.
- Completed on 01/25/17

- Solenoid Vacuum System control design
 - —Use 24 VDC power source to main vacuum gate Pneumatic Valve PV8600.
 - Isolated Rhino 24V power supply 3.75 A, 90 W was assigned.
 - —Instrumentation to monitor vacuum signals:
 - CG8606 main vacuum gauge → PLC Analog input module (0-10 V)
 - CG8600TB gauge → PLC Analog input module (0-10 V)
 - TB8600 Turbo Pump speed → PLC Analog input module (0-10 V)
 - PV8600 valve position → PLC Digital input module (0-31.2 V DC)
 - —Clean 110 VAC power used for Vacuum instrumentation (pumps and hardware controllers)
 - —Solenoid P&ID diagram corrected with the proper signal names updated on January 2017.
- Completed on 11/20/16.

Solenoid Vacuum System hardware controllers

Solenoid P&ID Vacuum System **4 Signals Monitored by Solenoid PLC** SOLENOID SERVICE CG8606 - Main vacuum gauge TOWER SEE SOLENOID CRYOGENICS SCHEMATIC B00000-09-00-0600 PV8600 - Valve position 4 00 PROTECTION SCREEN CG8600TB - Vacuum gauge TB8600 - Turbo Pump speed 0.25 O.D. SUPPLY LCW SUPPLY 1ST LEVEL -0.25 O.D. CU FESTOON 0.25 I.D. PARAFLEX HOSE

Solenoid cRIO grounded

- —Torus Fast DAQ cRIO presented high levels of noise in the readout Voltage Tap data.
- —As part of the noise prevention in the data acquisition for the Solenoid Voltage Tap, a ground wire was run from the chassis of Solenoid Fast DAQ cRIO to the control Rack.
- —Levels of noise did not decreased after grounding.
- Noise problem continues being investigated
 - Possible solution: implement hardware filter

Solenoid Fast DAQ cRIO chassis grounded to the Solenoid control rack

12

Solenoid P&ID latest version issued on 26/01/17 EXISTING EXHAUST LINE NEMBER SEE-A HOW 5.0.
CHANGED HEATER WAS "RIT", NOW "HTR".
ACOED VCL LEAD FLOW VAPORIZERS.
CHANGED SV8122 FROM "F.O." TO "F.C." Temp Sensors on relief Valves added SVBeZBCK⊡¥ SVB678DV⊡¥ 300K-80K PV8522SCD ADDED HTRB621C, HTRS621D, HTRS621E, HTRS621F, TC8621C, TC8621D, TC8621E AND TC8621F CHANGED RV8620A TO 1-1/2 X 2, 2,7 ATM CHANGED RV8620B TO 1-1/2 X 2, 3,4 ATM 4K PV8512S 🛱 🛨 CHANGED RYSSEMS TO 1-1/2 X 2, 3,4 ATM CHANGED RYSSEMS TO VEHT TO ATMOSPHERE MOVED SYSSEMS DELETED CT / PTS6778 (LOCAL) ADOED NYSSEM ADOED NYSSEMS ADOED NYSSEMS ADOED RELIEF PRESSURE N/ & NO/ GUARD DISTRIBUTION CAN T NVB674P X (BELLOWS I SEALED) DWG B00000-09-00-0500 3/8 00 5/8 08 3/8 00 SUB-ATMOSPHERIC EV86110D CV-3.0 LEAD RESERVOIR 1/2 00 18 NPS × 30 LG 165 PSIA RATED 1/4 00 × .035 1/2 00 SP-2 PSIG RV8600 X T 1/2 00 8 P/8600 to 1/2 00 VACUUM PUMP SCHEMATIC JLAB ETI FTI SSTL/AL -INSTRUMENTATION PORT-THERMOMETRY SENSOR(S) AND VOLTAGE TAP(S) 1-1/4 Local Heaters on Leads added Vacuum signals modified HALL B SOLENOID 4.4K-3.9K SUPPLY BLUE OPERATING TEMPERATURE: 4.4K-3.9K OPERATING PRESSURE: 1.2-0.9 ATM HEAT SHIELD M/ TRACE TUBES COOLDOWN MAX: 3 q/sec STEADY STATE MAX: SIGNATURE J. HOGAN R. FAIR L. ELOUADRHIRI

13

- Solenoid Service Tower (SST) Instrumentation Test
 - —Instrumentation Test PLC-EPICS Plan spreadsheet generated.
 - Document contains detailed information and procedures to perform the test.
 - Objectives of the plan test were:
 - Check hardwiring, hardware configurations, controllers and monitoring systems.
 - Ensure correct readout of the sensors in PLC controller and EPICS system.
 - Instrumentation tested specified on the spreadsheet
 - Not all sensors and instrumentation were tested, due that Helium flow is required.
 - Readout values of the instrumentation tested were recorded.
 - Section of comments to point future correction and improvements on the solenoid control system were added.
- Completed on 02/27/2017.

• Instrumentation Test PLC-EPICS Plan spreadsheet

				<u>'</u>		INSTRUMENTATION TEST PLC- EPICS PLAN						
						SOLENOID SERVICE TOWER - SST						
Signal ID	Sensor Type	Calibrated -		To be tested	To be Tested			Set Point	ReadBack	ReadBack PLC	ReadBack EPICS	Comments
		Tested	Installed	Now	after	Action	Check	Set Polit	Controller			
TR8622A	Cernox	Yes	Yes			1. Verify hardwiring - Use reference DWG 0649 & 0678	٧	Temp Room ~ 300 [K]	293.982	293.551	293.55	
TR8622Ar		Yes	Yes	_		2. Check sensor connection in the Cryocon unit - Use Cryocon maps	٧		293.982	293.551	293.55	
TR8622B		Yes	Yes			 Unplug DB9 connectors except sensor that is being checked in rear panel of Cryocon 1 	٧		294.418	293.987	239.99	
TR8622Br		Yes	Yes			4. Verify if sensor position correspond to the channel assigned	٧		294.418	293.987	239.99	
TR8611		Yes		Yes		5. Check communication between 490-NBX module and PLC	٧		clip	0	0	
TR8611r		Yes				6. Verify correct read-back values for the sensor in the PLC controller	٧		clip	0	0	
TR8672		Yes				7. Check communication between PLC and EPICS	٧		clip	0	0	Cryocon1 unit at Channel F has set an "Internal_Temp" sensor connected
TR8672r		Yes				8. Use the Helium SST EPICS screen to verify and monitor the temperature sensor readings in [K] units	٧		clip	0	0	
TR8671		Yes				9. Record Read-back values - compare PLC and Cryocon Readings	٧		clip	0	0	
TR8671r		Yes				10. Repeat the steps above with each temperature sensor	٧		clip	0	0	
TR8610		No							clip	0	0	
TR8610r		No							clip	0	0	
TR8670	Cernox	Yes		Yes		1. Verify hardwiring - Use reference DWG 0649 & 0678	٧	Temp Room [~] 300 [K]	clip	0	0	
TR8670r		Yes				2. Check sensor connection in the Cryocon unit - Use Cryocon maps	٧		clip	0	0	
TR8673		Yes				Unplug DB9 connectors except sensor that is being checked in rear panel of Cryocon2	٧		clip	0	0	
TR8673r		Yes				4. Verify if sensor position correspond to the channel assigned	٧		clip	0	0	
TR8674		Yes				5. Check communication between 490-NBX module and PLC	٧		clip	0	0	
TR8674r		Yes				6. Verify correct read-back values for the sensor in the PLC controller	٧		clip	0	0	
TR8624A		Yes				7. Check communication between PLC and EPICS	٧		clip(blinking)	0	0	Cryocon2 unit at Channel D has set an "Not assigned" —(Internal Temp) sensor connected
TR8624B		Yes				8. Use the Helium SST EPICS screen to verify and monitor the temperature sensor readings in [K] units	٧		clip(blinking)	0	0	
TP8621A	PT- 100	Yes				9. Record Read-back values - compare PLC and Cryocon Readings	٧]	clip	0	0	
TP8621Ar		Yes				10. Repeat the steps above with each temperature sensor	٧	clir	clip	0	0	
TP8621B		Yes							clip	0	0	
TP8621Br		Yes						<u> </u>	clip	0	0	

• Solenoid Service Tower was moved to Hall B on December 15th, 2016.

Instrumentation – EV valves

Lead connectors

Data sensor Cables

Vessel- Solenoid Service Tower

Provisional platform

- Solenoid Service Tower (SST) Instrumentation Test
 - —The following sensors and instrumentation were tested on the SST
 - Cernox temperature sensors. total 20
 - Additional test perform in the Cryocon units 1,2 and 3.
 - PT-100 Temperature sensors. total 16
 - Pressure transducers total 2
 - Differential Pressure transducers Total 2
 - LVDTs Lineal variable differential transducers Total 4.
 - ◆ Additional configuration made in DIP switches was required.
 - Valves
 - Electric Valves EV Total 4
 - Pneumatic valve PV- Total 1
- Completed on 02/27/2017.

Solenoid Service Tower (SST) Instrumentation Test

Cernox and PT-100 Temp Sensors Read by the Cryocon units

EV Valves

PV Valve

18

Pressure Transducers

Differential

Pressure Transducers

- Solenoid Service Tower (SST) Instrumentation Test
 - —PLC control programs and routines associates with the instrumentation were tested.
 - PID Loops run as expected.
 - Configuration and scale factors (Engineering units) on the PLC were verified.
 - —Issues regarding to the control hardwiring for the instrumentation on SST were solved
 - Input signal for Pneumatic Valve 8674 was changed.
 - Signal changed from analog PLC module to Relay output module.
 - Swapped air connector for valve.
 - PLC relay module was replaced (1 channel burned due wrong wiring).
 - Reassigned proper channel for OPEN JT86 relay output signal.
 - ◆ Tested 24 V DC relay output to all signals Open/Close for the EV valves.
 - —Correction of the solenoid controls drawings and documentation related
 - DWG B00000900-0640, 0623 and 0626 were updated.
- Completed on 02/27/2016.

- Solenoid Service Tower (SST) Instrumentation Test
 - —EPICS Screens were tested
 - Communication between PLC and EPICS was tested.
 - Solenoid Helium SST screen readouts for all the sensors and valves responded as expected.
 - Contributed to correct valve indicator for valve PV8674.
 - Noticed differences to get into PID controls screens for heaters.
 - Tested functionality of the PID control screens used to set the values to control OPEN/CLOSE for the EV valves.
 - Tested Manual Mode.
 - Verified stability and response for the valves at 50 percent open.

EV8611CD control PID screen

Solenoid Magnet: Status Report

• Solenoid Helium – SST Screen used to perform Test.

Solenoid Documentation –Tasks

- Solenoid Cooldown Documentation
 - 1. B0000000901-P011 Hall B Solenoid System Cryogenics, Pre-Cooldown Instrument Checkout Procedure.
 - Provide a general procedure for verifying 'sensible' readouts of cryogenic instruments prior to cooldown and to make available a location to record the results of the same.
- Completed on 02/16/17
 - 2. B00000402-S001 Hall B Magnet and Cryogenic Control
 - Describes the main control systems and sensors implemented in the Solenoid Magnet .
- Completed on 03/20/17

Solenoid Documentation –Tasks

—Solenoid Magnet and Cryogenic Control Diagram Updated

Solenoid Documentation –Tasks

- Solenoid Pre-Power Up Documentation
 - 3. B000000400-P005 Hall B Solenoid Pre-Pre-Power-Up Interlock Checkout procedure.
 - Describes steps to perform interlocks checks before energization of the magnet.
- Completed on 02/16/17
 - 4.B000000400-P003 Hall B Solenoid Pre-Power-Up Instrument Checkout Procedure.
 - Describes a general procedure for verifying 'sensible' readouts of instruments prior to energization.
- Completed on 02/13/17

Upcoming Solenoid Tasks

- Expected delivery for the Solenoid Magnet to JLab has been shifted to May 9th 2017.
 - —Reason for delay:
 - During the load transfer of the coils to the cryostat vacuum jacket at the end of January, several components of the suspension system broke.
 - This was caused by the steel parts for the support system not being made according to the mechanical drawings.
 - —Once the magnet arrives the following tasks will be performed by Hall B and magnet group (to be completed ~ 6 weeks after delivered)
 - Location and installation of the magnet in the Hall B.
 - Welding of main structure and line components of the Solenoid
 - Wiring of the sensors and instrumentation related.

Upcoming Solenoid Tasks

- DSG group will be involve in the next tasks:
 - —Full test of the PLC control program
 - —Test cRIO low voltage LabVIEW program
 - —Test cRIO Fast DAQ LabVIEW program
 - —Complete instrumentation test on the SST
 - —Test Instrumentation and sensors of the Solenoid magnet
 - —Perform Pre-power up Interlocks checklist procedure.
 - —Perform Solenoid System Cryogenics, Pre-Cooldown Instrument Checkout Procedure.
 - —Fix problems related to acquisition data In progress
 - Based on the current problems presented on the Torus magnet
 - Tested hardware filter to the Voltage Tap signals that will be added on the Solenoid.
 - Solution to avoid problem of readout 350 K error on the Sol-LV-cRIO is being investigated.

Conclusion

DSG contributed to:

- Developing programs for PLC and cRIO controllers
- —Improving the control and monitoring systems
- —Testing Instrumentation
 - Hardware and wiring verification
 - Configuration of controllers, sensors and instrumentation .
- Documenting control systems and procedures.
- —Solving discrepancies with technical documentation.

