
1

Hall C EPICS
Slow Controls and Monitoring System

Detector Support Group

Peter Bonneau (Lead), Mary Ann Antonioli, Pablo Campero,

Brian Eng, Amanda Hoebel, and Tyler Lemon

2

Contents

• Project Objectives

• System Architecture

• Control System Studio (CSS)

• Mya Archiver

• EPICS Framework

• Project Status

• Conclusion

Detector Support Group

3

Project Objectives

Develop integrated EPICS-based controls and
monitoring systems for HMS and SHMS

• User interface screens
― Clear and consistent

• Remote monitoring
– Via web browser

• Integrated alarm handler system
– Auto-emailing alarm notifications

– Alarm logging

– User guidance when alarms occur

• Archiving of signals
– Easy user interface

• Use similar EPICS slow controls framework as in Halls B & D
– To have consistency within Physics Division

– Enables DSG expertise to support and maintain EPICS across Physics Division

Detector Support Group

4

Hall C Slow Controls Architecture

Detector Support Group

Allen Bradley
ControlLogix PLCs

CAEN
HV

HMS

Allen Bradley
ControlLogix PLCs

CAEN
HV

SHMS

Additional
Hardware

Hall C

Mya Archiver

Accelerator

H
al

l C
 S

u
b

n
e

t

DSG EPICS
Development

Computers

DSG Control Room

CSS Operator
Interface

Counting House

CSS Monitoring

In Jefferson Lab

Hall C Slow
Controls Server,
Linux CSS Web

OPI Server,
Remote Screens

Computer Center

WWW Monitoring

5

CS-Studio Overview
Control System Studio (CSS)
Open source Java-based collection of integrated software tools to monitor
and operate large scale control systems

• CSS developed by Oak Ridge, Brookhaven, Lawrence Livermore,

Michigan State, DESY

• CSS components being developed
– BOY - User Interface screen

– WebOPI - Remote monitoring

– BEAST - Alarm handler system

• Other components under investigation
– Data browser

– Logbook

– Diagnostic tools

• At JLab, used by Hall B and Hall D

Detector Support Group

http://controlsystemstudio.org/index.html

6

CSS/BOY User Interface

• CS-BOY (Best OPI, Yet) features

– An Operator Interface (OPI) development and runtime

environment

– Works like web browsers

– .OPI file is a regular XML file that can be edited in OPI editor or

text editor and run in OPI Runtime

– Dynamic OPIs can be developed via PV-triggered scripts or rules

– Comprehensive set of widgets

Detector Support Group

7

CSS/BOY Development Environment

Detector Support Group

All-In-One workbench for OPI editing
Navigator

• Browser shows all files in CSS workspace

Outline

• Overall view of screen under development

Toolbar

• CSS tools

— Create file, arrange widgets, zoom

Editor

• Workspace where widgets are placed to
develop screens

Console

• Prints error and status messages during
development and running

Palette

• List of widgets used to monitor, control, and
organize screen

Properties

• All settings for a selected widget

8

CSS/BOY Run-Time Environment

Detector Support Group

• Run during operations by end users

• Run-time environment starting script

– Specific for Hall C (HallC-CSS)

– Runs on Hall C slow controls server

– Generates temporary CSS Workspace for

each CSS-BOY session

– Provides consistent behavior and user

experience

• Opens with a top-level menu window

– Lists major systems with links to

tree-structured sub-menus

9

Steps to Develop and Install CSS/BOY

1. Export PV names from PLC HMI screens
– 63 HMS HMI screens

– 210 SHMS HMI screens

2. Add diagrams and background images to CSS screen

3. Add indicators to CSS screen for each PV

4. Assign PVs to indicators

5. Add rules and scripts to indicators

6. Develop CSS starting scripts

7. Integrate CSS-BOY screens into slow controls server

8. Update server’s channel-access settings to point to

appropriate IOC or gateway

Detector Support Group

10

CSS/BOY User Interface

Detector Support Group

.

Working CSS-BOY OPI for SHMS Horizontal Bender magnet developed by DSG

Screen is replicated from current PLC HMI screen

11

CSS/WebOPI Remote Monitoring

Detector Support Group

• Allows CSS screens to be viewed in
web browser

• Read-only EPICS channel access
– No screen development capabilities

– Requires CUE login for authentication

• Runs as application in a Java servlet
– Tomcat recommended for servlet

• Existing CSS screens can be reused
with adjustments
– WebOPI does not support 3D effects,

dashed lines, or color gradients

– Some inconsistencies in text size
between WebOPI and CSS

CSS WebOPI

Comparison of widgets in CSS and WebOPI

showing WebOPI’s lack of 3D shading and

color gradients.

12

Steps to Develop and Install WebOPI

Detector Support Group

1. Develop channel-access gateway
— Status:

 Gateway set up by accelerator to read from Skylla7

 To be replaced by DSG-developed server

2. Develop CSS screens
— Status: In progress

3. Set up server in computer center
— Install Java servlet that will run WebOPI on server

— Status:
 Investigating server requirements

 Tomcat installed on DSG PC for initial development

4. Configure and run servlet with WebOPI
— Load WebOPI’s web-archive (.war) file into servlet

— Create configuration file for WebOPI
 Set .opi files’ storage path

 Set EPICS channel access settings

— Status:
 Complete on DSG development PC

 WebOPI set to run on servlet at URL localhost:8080/webopi3.3

5. Verify screen layouts on WebOPI
— Correct text clipping and sizes caused by .opi font inconsistencies

between hosts

— Status: In progress

Preliminary CSS-BOY screen for SHMS

running in WebOPI

WebOPI is running on Tomcat servlet

on DSG PC at localhost URL

13

Operational WebOPI Screens

Detector Support Group

WebOPI screen for SHMS HB magnet (with live data)

Hall C WebOPI Main Menu

14

CSS/BEAST Alarm System

Detector Support Group

Best Ever Alarm System Toolkit

• Distributed alarm system

– Alarm Server
 Uses EPICS channel access to monitor alarm triggers in

control system

– CSS user interface
 Views current alarms as table or hierarchical tree

– Relational Database
 Configures and logs

– Web reports
 Analyzes number and frequency of alarms, search alarm

configurations

• User interface features for operators

– Access guidance on how to handle specific

alarms

– Invoke links to related operator interfaces or

other CSS tools for the alarm trigger PVs

– Acknowledge alarms

– Edit configuration

Hierarchical

Tree

Operator Interface for Triggered Alarm

Acknowledged Alarms

User Actions

(guidance,

acknowledge,

configure)

Unacknowledged Alarms

Summary

15

CSS/BEAST Alarm System

Detector Support Group

Alarm Cfg & State

RDB

EPICS IOCs

Alarm Server
Current Alarms: Acknowledged? Transient? Annunciated?

LOG

Message

RDB

JMS

to

Speech

JMS

to

RDB

Web

Reports

CSS Applications

Alarm Client GUI

JMS

Alarm Updates Ack’; Config UpdatesAnnunciationsLog Messages

TALK ALARM_CLIENTALARM_SERVER

EPICS Process Variables (PV)Updates

Java Message Service (JMS)

Relational Data Base (RDB)

https://en.wikipedia.org/wiki/Java_Message_Service
https://en.wikipedia.org/wiki/Relational_model

16

Steps to Develop and Install CSS/BEAST

1. Generate CSV of all PVs for alarm handler

2. Develop Python script to convert CSV data to

BEAST XML file

3. Develop JMS-to-RDB routine for message

logging

4. Develop JMS-to-annunciator routine

5. Configure “alarm configuration and state” RDB

to generate web reports

6. Develop CSS GUI for BEAST

Detector Support Group

17

Mya Archiver

• Hardware

– Accelerator’s servers

 Maintained by Accelerator

• Software

– JLab’s Mya Archiver

 Myaviewer & Myaplot user

interfaces

 PVs archived with “dead-

bands”

 Command line tools (myData,

mySampler) to dump archive

history to ASCII tables

 Organized in “groups”

Detector Support Group

Myaviewer

Myaplot

18

EPICS Framework

Hall C Slow Controls Server

• Slow control server cost ~$4800
– Similar to Hall B slow control servers

• Will run EPICS base and support services

• JLab Computer Center will maintain
– Computer hardware

– Operating system and monitoring software
 RedHat Enterprise Linux (RHEL7)

 Monitored by Nagios with regular automatic checks
o cpu/disk/memory usage

o necessary software running (e.g. alarm server)

o email notification

Detector Support Group

https://en.wikipedia.org/wiki/Nagios

19

EPICS Framework

Detector Support Group

EPICS and Supporting Software

Software Function

EPICS Base Main core of EPICS

• Build system and tools

• Common and OS-interface libraries

• Channel Access client and server libraries

• Static and run-time database access routines

• Database processing code and standard record

• Device and driver support

CSS-BOY User Interface screen operations and starting scripts

CSS-WebOPI Remote monitoring via Web

CSS-BEAST Alarm System

Hall C Slow Controls Server

20

EPICS Framework Cont.

Detector Support Group

EPICS and Supporting Software

Software Function

PLC to EPICS Interfaces Allen Bradley PLCs to EPICS

SoftIOCs Software-based EPICS input/output controllers

IOC Health Monitor Monitors health of EPICS input/output controllers

BURT Saves/restores EPICS PVs

Boot Server For loading OS and databases on hardware IOCs

procServ • Wrapper application that runs any process (e.g. a softIOC,

a CA Gateway) in the background

• Manual or automatic on start, crash, or exit

• Logging supported

Hall C Slow Controls Server

21

PLC to EPICS

Detector Support Group

PLC to EPICS SoftIOCs
• Software to convert PLC tags into EPICS PVs over Ethernet

— ether_ip device EPICS support driver

 A support module that interfaces Allen Bradley ControlLogix PLCs
with EPICS via Ethernet

o Used by Hall B and Hall D

— Python configuration scripts

 Generates the PLC EPICS databases

 Separate script generates alarm handler configuration

— PLC EPICS databases

 Created from PLC tags and configuration parameters

22

PLC to EPICS

Detector Support Group

switch

switch

Dell slow controls server
running PLC-to-EPICS soft IOCs

HMS PLCs

SHMS PLCs

H
a

ll
C

 s
u

b
n

e
t

Et
h

er
n

e
t

HMS soft IOC

driver database

SHMS soft IOC

driver database

HMS PLC tags

SHMS PLC tags

EPICS PVs

EPICS PVs

23

Steps to Develop and Install PLC to EPICS

1. Generate merged data list from PLC tags from HMS &

SHMS in RSLogix 5000 (.ACD) files
– Python scripts will use PLC network tags to generate EPICS databases

2. Determine optimized number of SoftIOCs for PLCs
– Minimum of two – HMS & SHMS

3. Develop Python scripts to convert tag data list into

EPICS databases

4. Determine EPICS process variable aliases for PLC tags

5. Use Python scripts to convert tag data list into EPICS

databases
– EPICS record fields auto-generated

Detector Support Group

24

Steps to Develop and Install PLC to EPICS (cont.)

6. Develop SoftIOCs initialization scripts using ether_ip

EPICS support driver and PLC EPICS databases

7. Install and configure PLC to EPICS SoftIOCs on slow

controls server

8. Configure slow controls server to auto-start the

SoftIOCs

9. Configure slow controls server to monitor the SoftIOC

processes

Detector Support Group

25

Project Status

Tasks Completed

• Built development computers

— Installed RedHat Enterprise Linux (RHEL) & CUE

— Installed EPICS Base

— Configured and installed CS-Studio

• Generated first working Hall C CS-Studio OPI screens

— Hall C Main Menu

— SHMS HB Magnet screen

— SHMS overview displays key spectrometer PVs

Detector Support Group

26

Project Status

Work in Progress

• CS-Studio OPI screens
— HMS & SHMS operator screen development

• CS-Studio WebOPI Remote Monitoring
— Apache Tomcat Web server development

— Remote OPI screens development

• EPICS framework
— Linux-based PLC Tag to EPICS PV Interface

Detector Support Group

27

Project Status

Detector Support Group

Allen Bradley
ControlLogix PLC’s

CAEN
HV

HMS

Allen Bradley
ControlLogix PLC’s

CAEN
HV

SHMS

Misc. Slow
Controls

Hardware

Hall C

Hall C Slow
Controls Server,

Linux

Computer Center

Mya Archiver

Accelerator

CSS Web OPI
Server and

Remote Screens

Computer Center

H
al

l C
 S

u
b

n
e

t

WWW Monitoring

DSG EPICS
Development

Computers

Control Room

NEW/UPGRADE

CSS Operator
Interface

Counting House

CSS Monitoring

Jefferson Lab

EPICS Processes

EPICS Base
CSS-BOY
CSS-BEAST
CSS-WebOPI
PLC to EPICS
SoftIOC’s
IOC Health Monitor
BURT Save/Restore
Boot Server (VME)
procServ

work in progress

28

Conclusion

DSG is developing an EPICS-based controls

and monitoring system for HMS and SHMS

System Features
– CS-Studio BOY user interface screens

– CS-Studio WebOPI remote access monitoring

– CS-Studio BEAST alarm handler system

– MYA Archiver

– Similar to EPICS slow controls framework in Halls B & D

Detector Support Group

DSG Staff involved in this project
Mary Ann Antonioli, Peter Bonneau (Lead), Pablo Campero,

Brian Eng, Amanda Hoebel, and Tyler Lemon

