HDice NMR Synchronization Status

Detector Support Group
Peter Bonneau
3/5/2018

Synchronization Topics

- Goals of synchronization.
- Functionality of existing NMR.
- Planned features of synchronized NMR.
- Limitations of Lock-in Amplifier.
- Synchronization test programs.
- Project schedule.
- Status summary.

Goals of NMR Synchronization

- Provide an independent and accurate magnet current measurement.
- Current measurements to be synchronized with the lock-in amplifier measurements.
- Maximize the number of acquisition points for variable NRM sweep lengths (20-600 sec.)
- Store measurements in NMR data files.

Existing NMR Program

- Uses internal lock-in amplifier triggering.
- Current/field is read back from power supply.
- Asynchronous lock-in amplifier and current measurements.
- Different acquisition rates for current/field measurements and stored lock-in amplifier data.
- Current measurements are not stored in NMR data files.

NMR Synchronization Features

- Use external lock-in amplifier triggering.
- Current measured by shunt instrumentation.
- Current and lock-in amplifier measurements synchronized.
- Variable acquisition rates to maximize number of data points.
- Synchronized current & lock-in amplifier measurements stored in NMR data files.

Comparison of Features

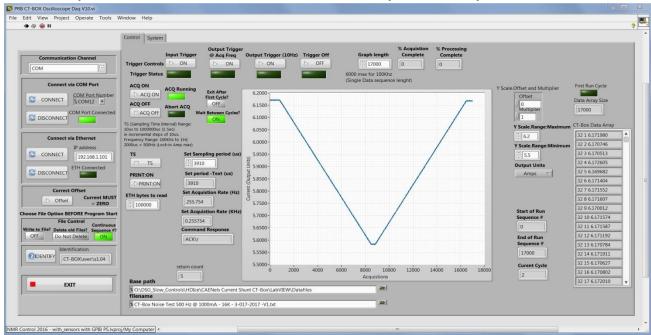
Feature	Existing NMR	Synchronized NMR
Triggering	Asynchronous lock-in trigger.	Synchronized by external lock-in trigger.
Current Measurement Instrumentation	Oxford Power Supply.	CT-Box current shunt.
Data Stream	Asynchronous lock-in amplifier and current measurements.	Synchronized lock-in amplifier and current measurements
Data Acquisition Rates	Different DAq rates for lock-in buffer data & current measurements.	Same DAq rate for instrumentation. Variable rate to maximize data points.
Data Files	Current measurements not stored in NMR data files.	Current and lock-in amplifier measurements are stored in NMR data files.

CAENels CT-Box Current Shunt

Synchronization based on a new product by CAENels:

- Summary of Specifications:
 - +/- 150 Amp range
 - 24 bit ADC current resolution
 - < 0.005% current accuracy
 - 1Hz 100 KHz sampling frequency in 10μs steps (Oscilloscope mode)
 - Output TTL triggering
 - Local current monitoring and status
- New product Issues:
 - Firmware errors requiring updates.
 - Hardware issues.
 - Lack of documentation on software protocols, etc.
 - Not shipped with software we could use.
 - Required extensive development of a library of LabVIEW instrument device drivers.
 - Developed LabVIEW DAq code using DSG device driver library to test the CT-box.
 - All Issues resolved.

Lock-in Amplifier

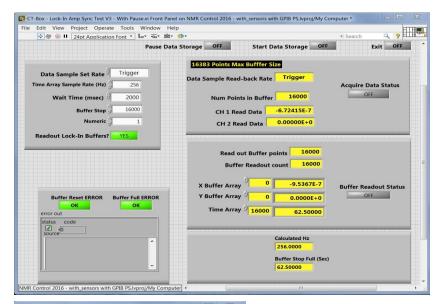

- Stanford SR844 Lock-in Amplifier Limitations:
 - Internal buffer depth only 16.3K:
 - > Limits number of data points on NMR sweeps.
 - > Must lower acquisition frequency on longer sweeps.
 - No output trigger available.
 - Slow acquisition rate 512Hz maximum (internal trigger)
 - Slow buffer data readout speed (~70 Sec. for 16K)
 - Input (external) triggering issues:
 - Specifications: Up to 512 Hz external triggering.
 - ➤ DSG testing shows at acquisition frequency ~>300Hz, trigger efficiency is less than 100%
 - > Trigger efficiency needs to be 100% for synchronization.

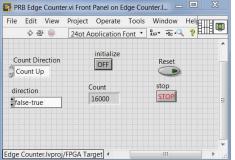
Synchronization Test Programs

- CT-Box data acquisition program.
- Lock-in amplifier test program.
- Triggering efficiency program.
- NMR development test program.

Synchronization Test Programs

- CT-Box data acquisition program.
 - Tests CT-Box data acquisition and triggering.
 - Uses queued data (FIFO)
 - Acquisition & data decode are independent processes.

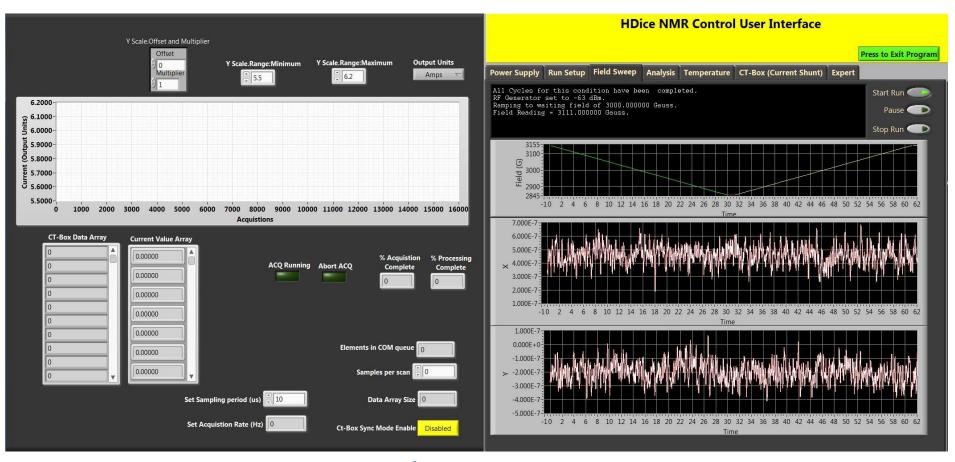



Synchronization Test Programs

- Lock-in amplifier test program.
- Triggering efficiency program.

Programs used together to test:

- Lock-in amplifier data acquisition.
- Data buffer storage and read out.
- Lock-in amplifier dual data stream.
- Lock-in amplifier external triggering capabilities and limitations.



Instrumentation used in NMR

- RF Signal Generator.
- RF Switching/Attenuator Box.
- Magnet Power Supply
- Helium temperature & level.
- Lock-in Amplifier.
- Current Shunt

- Tests the communication and timing between NMR Instrumentation.
 - CT-Box does not have an internal buffer memory.
 - Computer must accept CT-Box serial communication stream at data acquisition rate.
 - Program must communicate with all instrumentation used in NMR without dropping CT-Box events.

Asynchronous Test Sweep

Synchronous Test Sweep

Synced CT-Box & Lock-in Data

Async Power Supply Data

Synchronization Schedule

	DSG HDIce Schedule	F	eb	N	Mar	ch			April		L	М	ay			June			J	uly			Aug	ust		Sept	emb	er	С	ctob	er
2/22/2018		19	26	5 :	12	19 20	5 2	9	16 2	23 3	0 7	14	21	28	4 1	.1 18	8 25	2	9	16	23 30	0 6	13	20 2	27 3	3 10	17	24	1 8	15	22 2
	Upgrade of RF Box # 1 and # 2:																													\square	
	Upgrade electronics for readback of terminator and cable types & interlock status		П																											\prod	
	Debug and test																													\prod	
Upgrade of RF	Isolate rack mounting on RF generator, RF amplifier, RF box, signal generator																														
Rack #1	Configure new PC and instrumentation interface hardware for NMR rack 1 upgrade																														
	Debug and test NMR, RTP, and FRS programs with upgraded instrumentation																														
	Rack 1 instrumentation used to develop synchronization hardware and software		П		T					T	Т																			\prod	
	Install & debug instrumentation, computer, power supply, and hardware interfaces in HDIce lab														T															П	
	Develop, debug, and test hardware trigger interface for CT-box to lock-in amp																														
Cunchronization	Develop code interface between lock-in amp triggers with current measurement device drivers																														
Synchronization	Develop test program to test triggering rate efficiency and timing																													\square	
	Develop, debug, and test synchronization library sub-routines into lock-in amp DAQ code						П			T																				\prod	22 29
Amplifier Data	Modify, debug, and test NMR subroutines to write synchronized measurements to data file									T	Т																			П	
	Integrate, debug, and test synchronization code package into main NMR program																													П	
Debug Gauss offset issue in NMR scans							Г																							\prod	
Modify, debug, and test NMR code to write gauss/current measurements to data file							Т									İ								Ī	T		Ħ			\sqcap	
Revise RF Splitter/Attenuation boxes to add local instrumentation status readback capabilities																									T					\Box	
Consolidate RF Splitter/Attenuation box communication interfaces into a single communication interface										T	Т														T					П	
Debug VISA device b	pase drivers for Oxford Mercury iPS power supplies									T																					
Revise, debug, and t	est RTP and NMR programs for Oxford Mercury iPS power supplies																														
Update all NMR LabVIEW instrumentation drivers to VISA.										floor																					
Rewrite, reorganize, and document NMR main program and subroutine libraries		Т		T					П																T	Т					

Status Summary

The present work being done has to address the following questions:

- 1. Is the CT-Box current shunt going to work in synchronization?
- 2. What instrumentation will be the trigger for synchronization and will the instrumentation work?
- 3. What are the limitations to the synchronization plan?
- 4. Will the two independent (but triggered by the CT box) data streams from the lock-in amplifier & CT-Box align and have 100% trigger efficiency?
- 5. Can all of the instrumentation used in the NMR program communicate at the same time without losing CT-Box events?

Code development is underway and more testing is definitely needed, but so far all the answers look encouraging:

- 1. Yes.
- 2. CT-Box will trigger the lock-in amplifier and it will work.
- 3. The lock-in amplifier is the limiting factor in the system.
- 4. Yes, the two data streams will align and have 100% trigger efficiency.
- 5. Yes, all instruments can work together at speed without losing CT-Box events.