Timelike Compton Scattering

I. Albayrak¹, V. Burkert², E. Chudakov², M. Guidal^{3,*}, V. Guzey², K. Hicks⁴, *T.* Horn^{1,*}, C. Hyde⁵, Y. Ilieva⁶, F.J. Klein², C. Munoz Camacho², P. Nadel-Turonski^{2,*,**}, M. Osipenko⁶, R. Paremuzyan⁷, B. Pire⁸, F. Sabatie⁹, C. Salgado¹⁰, S. Stepanyan^{2,*}, L. Szymanowski¹¹, J. Wagner¹¹, C. Weiss².

- * spokespersons
- ** contact person
- 1) The Catholic University of America, Washington, DC 20064
- 2) Thomas Jefferson National Accelerator Facility, Newport News, VA 23606
- 3) Institut de Physique Nucleaire d'Orsay, IN2P3, BP 1, 91406 Orsay, France
- 4) Ohio University, Athens, OH 45701
- 5) University of South Carolina, Columbia, SC 29208
- 6) INFN, Sezione di Genova e Dipartamento di Fisica dell'Universita, 16146 Genova, Italy
- 7) Yerevan Physics Institute, 375036 Yerevan, Armenia
- 8) CPhT Ecole Polytechnique, F 91128 Palaisaeu CEDEX, France
- 9) CEA, Centre de Saclay, Irfu/Service de Physique Nucleaire 91191 Gif-sur-Yvette, France
- 10) Norfolk State University, Norfolk, VA 23504
- 11) National Center for Nuclear Research, Warsaw, Poland

LOI11-106: e⁺e⁻ pair production with CLAS12 at 11 GeV

PAC recommendation

"The physics addressed in this proposal is very relevant for the JLab 12 GeV program. The PAC encourages the development of a full proposal."

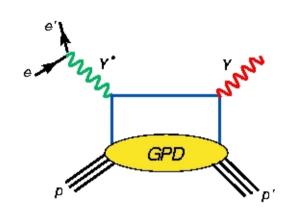
Timelike Compton Scattering

• Proposal will be submitted to the upcoming PAC 39.

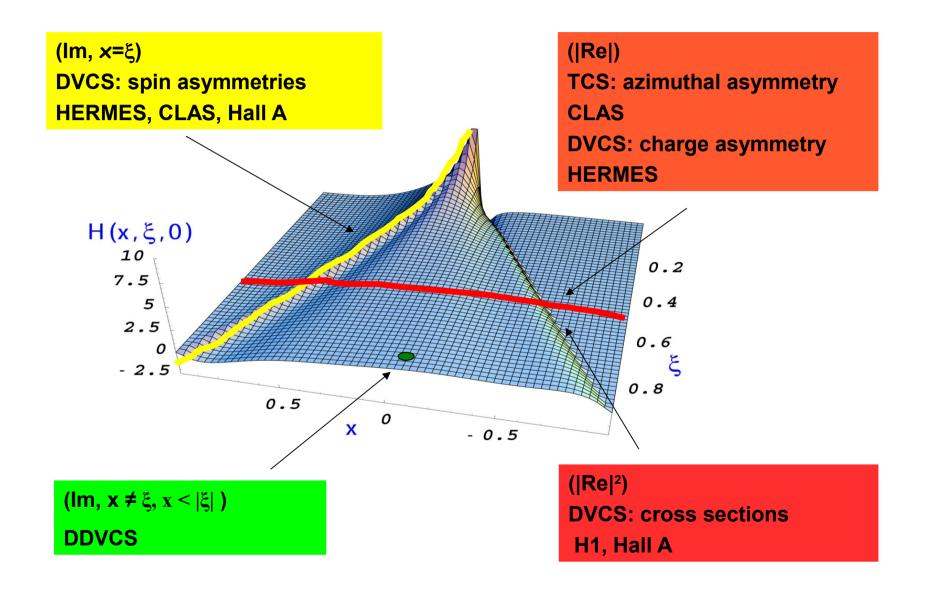
J/Y

- The first proposal, for production on the nucleon to probe the gluon distribution in the valence region, will be submitted to PAC 40.
 - additional proposals are likely to follow (e.g., nuclear targets, electroproduction)
- There is a dedicated proposal (C12-07-106) for Hall C to study photoproduction on nuclear targets at $t \sim t_{min}$, for which the rates would be better than in CLAS
- A LOI was also recently submitted to take a single high- Q^2 point with very limited statistics in Hall C. This is unlikely to impact the CLAS12 effort.

Compton scattering – nomenclature


- Real Compton Scattering
- Deeply Virtual Compton Scattering (DVCS)
 - Outgoing photon is real
 - Simplest probe of GPDs

- Incoming photon is real
- Complementary to DVCS

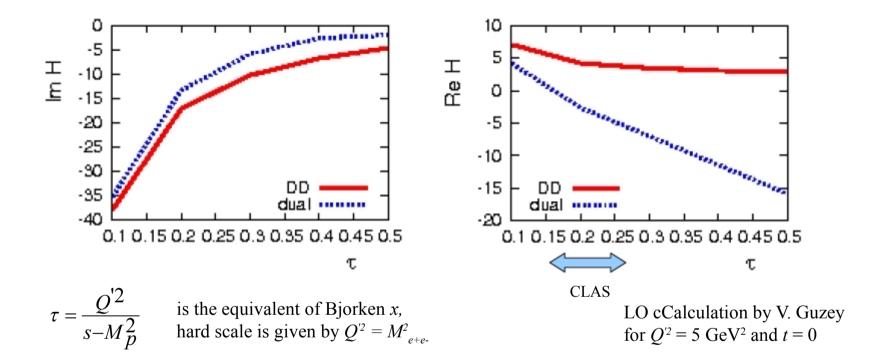

- Both photons are virtual
- Experimentally challenging

$$\gamma * + p \rightarrow \gamma * + p$$

GPDs can be extracted from Helicity Amplitudes or Compton Form Factors

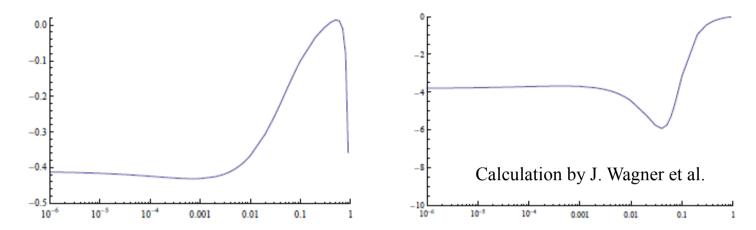
Probing GPDs through Compton scattering

Why TCS?

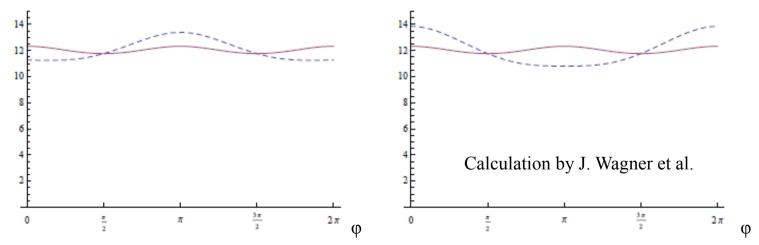

Theory

- Straightforward access to real part of amplitudes/CFFs/GPDs
- Impact on global fits for Compton Form Factors (Guidal, Sabatie)
- Dispersion relations how important is the real part at large x?
- Universality of GPDs extracted from exclusive processes
 - Spacelike Timelike comparison as for DIS and Drell-Yan
- Interesting behavior of NLO corrections
 - Sensitive to GPD models and potentially to gluons

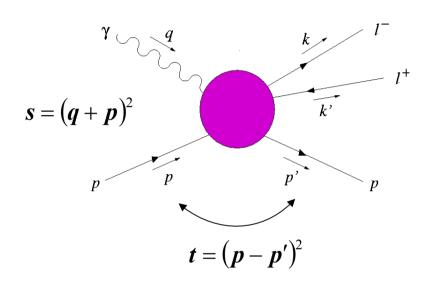
Experiment

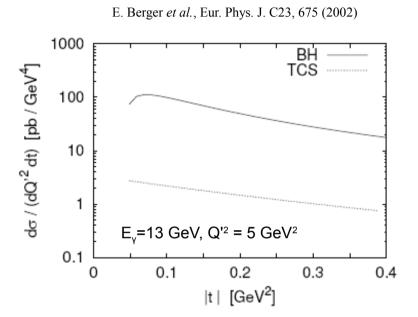

- Challenging to get real part from beam charge asymmetries (electron positron)
 - And currently no such facility

GPD models sensitive to real part at large x

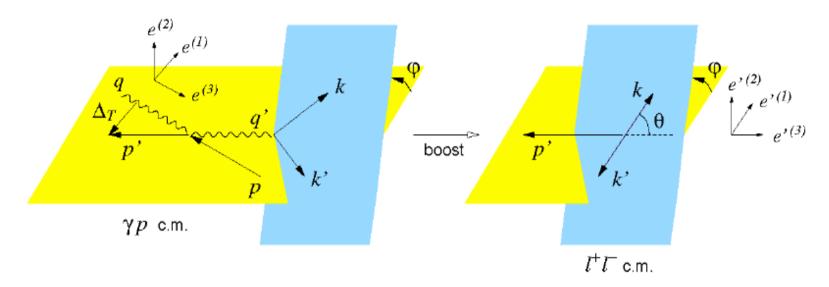

- Model predictions similar for Im H, but large differences for Re H
- Reliable measurements of real part are needed!

NLO corrections


Ratio of NLO correction to the Born term for the imaginary (left) and real (right) part of the CFF H for the Kroll-Goloskokov model, for $Q'^2 = 4 \text{ GeV}^2$, t = 0, and $\mu_F = Q$.

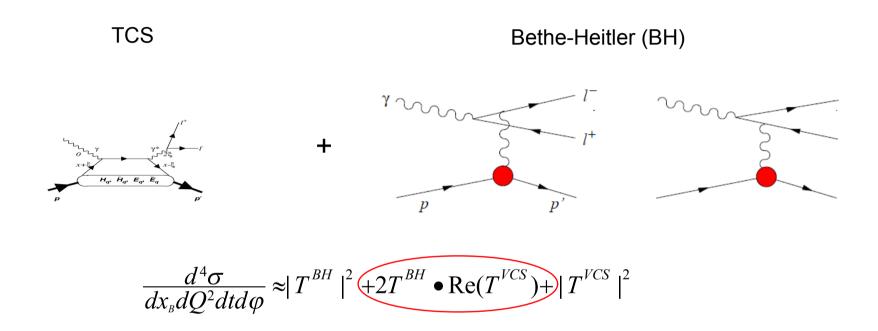

The correction on the right is almost entirely due to gluons.

LO (left) and NLO (right) differential cross sections for B-H (solid) and B-H + INT (dashed) for E γ = 11 GeV, Q'^2 = 5 GeV², and t = -0.1 GeV².


Photoproduction of lepton pairs

- TCS cross section is small compared with Bethe-Heitler (B-H) for all kinematics
 - cannot be accessed directly
- The interference term is, however, enhanced by the B-H and easy to isolate

Kinematics



- k,k' = momentum of e⁻, e⁺
- θ = angle between the scattered proton and the electron
- ϕ = angle between lepton scattering- and reaction planes

$$\frac{d\sigma_{BH}}{dQ'^2 dt d\cos\theta} \approx 2\alpha^3 \frac{1}{-tQ'^4} \frac{1+\cos^2\theta}{1-\cos^2\theta} \left(F_1(t)^2 - \frac{t}{4M_p^2} F_2(t)^2 \right)$$

For small Θ, B-H becomes large. A cut is usually applied.

Observables sensitive to the interference term

- Under lepton charge conjugation:
 - Compton and BH amplitudes are even
 - Interference term is odd
 - Observables that change sign project out only the interference term
- Example of observable: azimuthal angular distribution (φ) of the lepton pair

TCS cross section and the interference term

$$\frac{d\sigma_{TCS}}{dQ'^2d\Omega dt} \approx \frac{\alpha^3}{8\pi} \frac{1}{s^2} \frac{1}{Q'^2} \left(\frac{1+\cos^2\theta}{4}\right) 2(1-\xi^2) \left|\mathcal{H}(\xi,t)\right|^2$$

$$\frac{d\sigma_{INT}}{dQ'^2 dt d\cos\theta d\varphi} = -\frac{\alpha_{em}^3}{4\pi s^2} \frac{1}{-t} \frac{M}{Q'} \frac{1}{\tau \sqrt{1-\tau}} \cos\varphi \frac{1+\cos^2\theta}{\sin\theta} \Re\tilde{M}^{--}$$

$$\tilde{M}^{--} \approx \frac{2\sqrt{t_0 - t}}{M} \frac{1 - \xi}{1 + \xi} \left[F_1(t) \mathcal{H}(\xi, t) \right]$$

$$\mathcal{H}(\xi,t) = \sum_{q} e_q^2 \int_{-1}^1 dx \Big(\frac{1}{\xi - x + i\epsilon} - \frac{1}{\xi + x + i\epsilon} \Big) H^q(x,\xi,t)$$

Full interference term with polarized beams

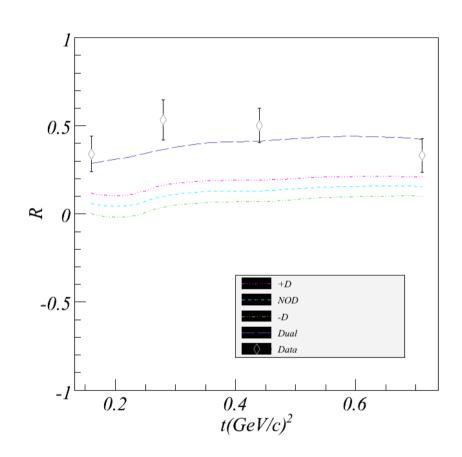
To leading order, in terms of helicity amplitudes:

$$\frac{d\sigma_{INT}}{dQ'^2 dt \, d(\cos\theta) \, d\varphi} = -\frac{\alpha_{em}^3}{4\pi s^2} \frac{1}{-t} \frac{M}{Q'} \frac{1}{\tau \sqrt{1-\tau}} \frac{L_0}{L} \left[\cos\varphi \frac{1+\cos^2\theta}{\sin\theta} \operatorname{Re} \tilde{M}^{--} \right] - \cos 2\varphi \sqrt{2} \cos\theta \operatorname{Re} \tilde{M}^{0-} + \cos 3\varphi \sin\theta \operatorname{Re} \tilde{M}^{+-} + O\left(\frac{1}{Q'}\right) \right],$$

$$-\frac{\alpha_{em}^3}{4\pi s^2} \frac{1}{-t} \frac{M}{Q'} \frac{1}{\tau \sqrt{1-\tau}} \frac{L_0}{L} \left[\sin\varphi \frac{1+\cos^2\theta}{\sin\theta} \operatorname{Im} \tilde{M}^{--} \right] - \sin 2\varphi \sqrt{2} \cos\theta \operatorname{Im} \tilde{M}^{0-} + \sin 3\varphi \sin\theta \operatorname{Im} \tilde{M}^{+-} + O\left(\frac{1}{Q'}\right) \right]$$

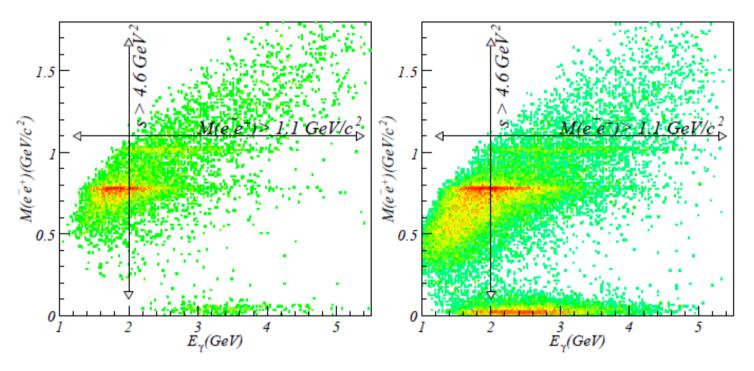
v: circular polarization of incoming photon also gives access to imaginary part

$$\frac{1}{2} \sum_{\lambda,\lambda'} |M^{\lambda'-,\lambda-}|^2 = (1-\eta^2) \left(|\mathcal{H}_1|^2 + |\tilde{\mathcal{H}}_1|^2 \right) - 2\eta^2 \operatorname{Re} \left(\mathcal{H}_1^* \mathcal{E}_1 \right) + \tilde{\mathcal{H}}_1^* \tilde{\mathcal{E}}_1 \right) \\
- \left(\eta^2 + \frac{t}{4M^2} \right) \left(\mathcal{E}_1|^2 \right) - \eta^2 \frac{t}{4M^2} \left(\tilde{\mathcal{E}}_1|^2 \right),$$


Example: first data from 6 GeV

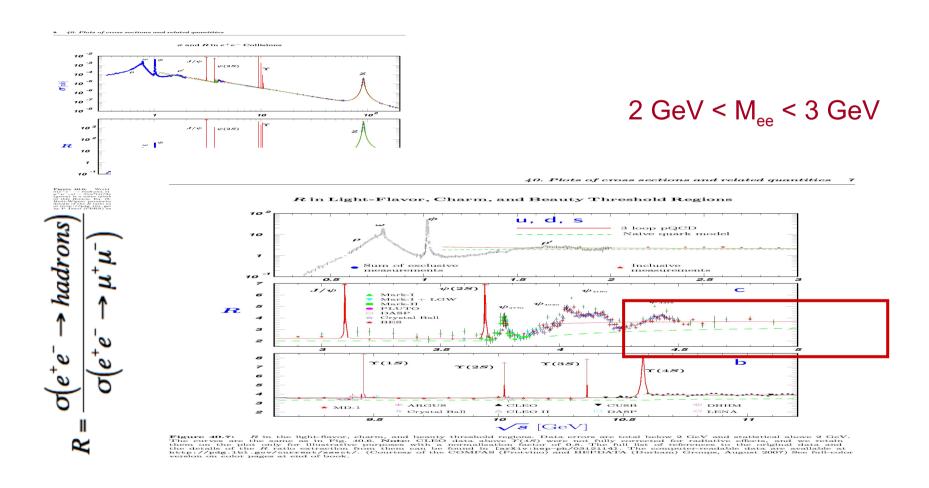
Cosine moment of weighted cross sections

$$\frac{dS}{dQ^{'2} dt d\varphi} = \int \frac{L(\theta, \varphi)}{L_0(\theta)} \frac{d\sigma}{dQ^{'2} dt d\varphi d\theta} d\theta$$

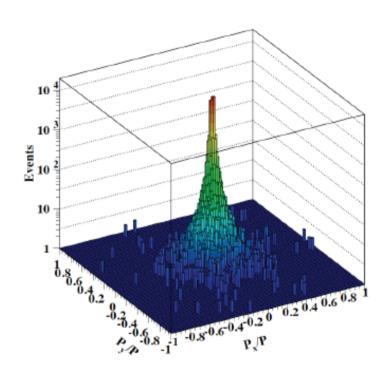

$$R = \frac{2\int_{0}^{2\pi} d\varphi \cos\varphi \frac{dS}{dQ'^{2}dtd\varphi}}{\int_{0}^{2\pi} d\varphi \frac{dS}{dQ'^{2}dtd\varphi}}$$

- Numerator is proportional to Re M⁻⁻
 - cos φ part of interference term
- R can be compared directly with GPD models even in experiments with limited statistics
- Sensitive to Polyakov-Weiss D-term?

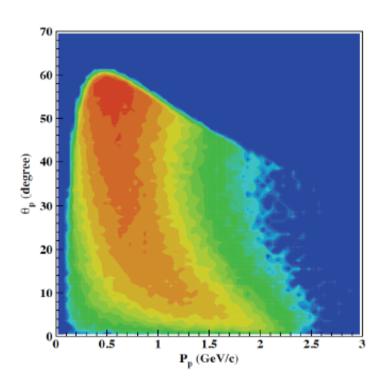
Comparison of results from e1-6/e1f with LO calculations by V. Guzey.


Limited coverage and statistics at 6 GeV

Data from e1-6 (left), e1f (right), and g12 have limited coverage in s and M_{ee} = Q'.

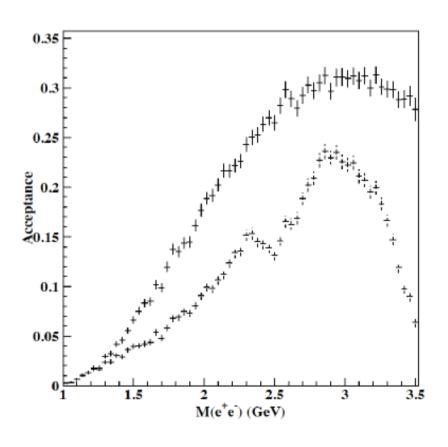

- Pilot experiments at 6 GeV are important for developing methods.
- 12 GeV will provide
 - A much larger reach in Q² (factorization, x range)
 - More statistics for multi-dimensional binning
 - A possibility to avoid resonances

Resonance-free region at 12 GeV



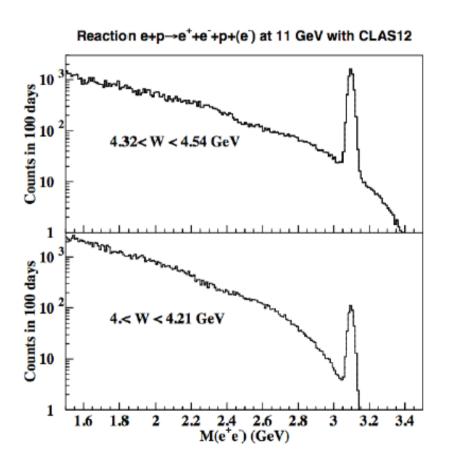
- JLab 12 GeV kineamtics are ideally suited for TCS
- Data can be taken in the resonance-free region between ρ' and J/Ψ

Beam electron and recoil proton kinematics



Low-Q² events are reconstructed by cuts on the transverse momentum of the missing beam electron

Protons from 9.5-10.5 GeV photons, for $M_{ee} > 1.5$ GeV


Acceptance (from fast Monte Carlo)

- (Top): only e+e- detected in CLAS
- (Bottom): e+e-p detected in CLAS
- With an untagged beam of quasifree photons we need all three for complete event kinematics

Acceptance is good for the most interesting events at high M_{ee} (Q')
due to the large lepton opening angle.

Rate estimate

- Counts in 100 days as function of $M_{ee}(Q')$
- For 2 < Q' < 3 GeV, the upper W = √s bin will have 20k events, and the lower 25k events.
- For analysis, the binning in W may be coarser, but the data will also be binned in t and ϕ , and a cut will be applied in θ^* .

Beam time already approved for CLAS12

Proposal	Physics	Contact	Rating	Days	Group	needed equipment	Energy	Group	Target
E12-07-104	Neutron magnetic form factor	G. Gilfoyle	A-	30	90	Neutron detector RICH IC	11	A	liquid D ₂ target
PR12-11-109 (a)	Dihadron DIS production	Avakian		D					
E12-09-007a	Study of partonic distributions in SIDIS kaon production	K. Hafidi	A-	56					
E12-09-008	Boer-Mulders asymmetry in K SIDIS w/ H and D targets	M. Contalbrigo	A-	TBA					
11-003	DVCS on neutron target	S. Niccolai	А	90					
E12-06-108	Hard exclusive electro-production of π ⁰ , η	P. Stoler	В	80	119	RICH IC Forward tagger	11	В	liquid H ₂
E12-06-112	Probing the proton's quark dynamics in Semi-Inclusive pion production	H. Avakian	A	60					
E12-06-119	Deeply Virtual Compton Scattering	F. Sabatie	А	80					
E12-09-103	Excitation of nucleon resonances at high Q ²	R. Gothe	B+	40					
E11-005	Hadron spectroscopy with forward tagger	M. Battaglieri	A-	119					
PR12-11-103	DVMP of ρ,ω, φ	M. Guidal		D					
E12-06-106	Color transparency in exclusive vector meson electroproduction off nuclei	K. Hafidi	B+	60	60		11	С	Nuclear targets
E12-06-117	Quark propagation and hadron formation	W. Brooks	A-	60	60		11	D	Nuclear
E12-10-102	Free Neutron structure at large x	S. Bueltman	А	40	40	Radial TPC	11	Е	Gas D ₂
E12-06-109	Longitudinal Spin Structure of the Nucleon	S. Kuhn	А	80	170	Polarized target RICH IC	11	F	NH ₃ ND ₃
E12-06- 119(b)	DVCS on longitudinally polarized proton target	F. Sabatie	Α	120					
E12-07-107	Spin-Orbit Correl. with Longitudinally polarized target	H. Avakian	A-	103					
PR12-11-109 (b)	Dihadron studies on long. polarized target	H. Avakian		D					
E12-09-007(b)	Study of partonic distributions using SIDIS K production	K. Hafidi	A-	110					
E12-09-009	Spin-Orbit correlations in K production w/ pol. targets	H. Avakian	B+	103					
PR12-11-109	SIDIS on transverse polarized target	M. Contalbrigo		C2		Transverse target	11	G	HD
TOTAL run time				1231	539				

Running conditions and beamtime request

Running conditions

- The TCS proposal requires 11 GeV beam and a LH2 target.
 - There are few other restrictions, and beamtime can easily be shared.

Beam time request

- The TCS proposal will request about 100 days at full luminosity
 - Simulations are still ongoing

Notes

- It would be possible to study TCS on other targets, but there is no obvious motivation for doing so at this point
- The upcoming J/Ψ proposal for the nucleon will request additional time with a reversed field for systematics checks.