TCS and DDVCS event generator New public version

- 1) Notations and principle
- 2) User's parameters: input and output files
- 3) Tests on TCS generation
- 4) Tests on DDVCS generation
- 5) Where to find a public version, status

Notations for Bethe-Heitler + TCS reaction

- 5 independent variables for unpolarized cross section. Choice for the generator: Q^{12} , t, Ey, φ , θ
- Linearly polarized beam: also depend on Ψ_s , Θ_s (photon polarization angle vs lab. axis. Θ_s = 90°)
- Polarized target: depend on ϕ_s , θ_s (target polarization angle vs lab. axis) longitudinal: $(\theta_s = 0^\circ)$, along x: $(\phi_s = 0^\circ, \theta_s = 90^\circ)$, along y: $(\phi_s = 90^\circ, \theta_s = 90^\circ)$. Any transverse direction possible.

 Ψ : (reaction plane, γ spin)

φ: (hadronic plane, e⁺e⁻ pair)

θ: (γ*, e⁻)

θs, Φs: (target spin vector orientation)

• Electron beam induced TCS (quasi-real photon) \Rightarrow see scheme for DDVCS additional angles are: ϕ_{beam} , θ_{beam} , θ_{v}

Polarization angles for TCS and polarized cross sections

New in this version of the generator

- polarized cross section: random spin direction for beam and target
- dilution factor: fixed for the target, fixed in case of linearly polarized beam (plan to calculate for next version), energy dependent for circularly polarized beam
- asymmetry at the given event kinematic for phase-space scan
- any target spin direction is possible

Beam:

circularly polarized or linearly polarized

Target:

linearly polarized \rightarrow correction for $\theta_s \neq 0^\circ$ in version 3.0, not in 3.1 (% level) transversely polarized \rightarrow corrections for $\theta_s \neq 90^\circ$ in version 3.0, not in 3.1 (% level)

Asym vs Φ, here: $Φ_s$ =0°, different $θ_s$ integrated over θ [45°, 135°].

~1% or less deviation expected for $\theta s=1^{\circ}$

Notations for Bethe-Heitler + DDVCS reaction

BH+DDVCS =
$$e P \rightarrow e' \mu + \mu - P'$$

• 7 independent variables for unpolarized cross section.

Choice for the generator: Q², Q'², t, x_{bi} , ϕ_L , ϕ_{CM} , θ_{CM}

With the generator:

unpolarized cross section, beam polarized cross section, asymmetry.

Notation of the angles in generator files:

$$\begin{split} \phi_{\text{CM}} &= \text{Phi_CMV} \\ \theta_{\text{CM}} &= \text{Theta_CMV} \\ \phi_{\text{L}} &= \text{Phi_LH} \\ \phi_{\text{beam}}, \ \theta_{\text{beam}} &= \text{theta_beam, phi_beam} \end{split}$$

Principle

- 1) User input file: TCS or DDVCS
- 2) Random generation of kinematics (linear in all dimensions), calculations of 4-vectors...
- 3) Event weighting by cross sections:
- unpolarized cross sections for BH+TCS or BH+DDVCS, "only BH", "only TCS or DDVCS" (can be switch on/off)
- polarized cross sections with dilution factor, beam and/or target
- asymmetries beam and/or target
- for TCS with quasi-real photon: equivalent flux
- version 3.0: calculations done for each event. Precise but slow. No checks of edge of phase space → cuts on acceptance maybe needed

corrections for θs≠0° or 90° included for polarized targets

- version 3.1: grid of cross sections with linear interpolation/extrapolations. % level accuracy vs "direct calculations". Faster, checks of edges of phase space. No θ s corrections.
- 4) Output file: ROOT TTree

Input files

TCS

Variable name	usage	limits (grid)	default value	
variable flame	usage	mints (grid)	delauit value	
Experimental configuration	Beam and	d target pa		
Beam type	real photon (0) initial electron (1)	0 or 1	0 or 1	
Beam energy (if electron beam)	used to calculate the photon flux	[~ 6, 12] GeV	11	
Luminosity	used for normal- ization	-	$10^{35}{\rm cm}^{-2}$	
out leptons	electron (1) or muon (2)	1 or 2	2	
Target lenght	luminosity	-	15 cm	
Target composition (A,Z)	luminosity only LH2 i	single atoms n v3.0, other	(1,1) or 1001 targets in v3.1	
Target = p (1) or n (2)	weight	1, 2	1	
	Polarizat	<u>ion options</u>	2.2	
Beam polariza- tion dilution factor	polarized cross sections	[0, 1]	0.8	
Beam pol. vector direction	case linearly po- larized	1 (x-axis), 2 (y-axis) or 3 (45°)	1	
Target polariza- tion direction	polarized targets	0 (unpolarized), 1 (x-axis), 2 (y- axis), 3 (z-axis)	3	
Target dilution factor	polarized targets	0 to 1	0.7	
Kinematics Kinematic range				
Photon energy	photon	[4.5, 11.5]	[5, 10.5]	
-t	Mandelstam variable	xx	[.05, .7]	
Q'^2	final photon vir- tuality		[.09, .3]	
θ_{CM}	azimuthal angle of decay leptons	[40°, 140°]	[40°, 140°]	
Q_{max}^2	quasi-real pho- tons maximal virtuality	0 to ~ 0.5	0.3	

DDVCS

Variable name	usage	limits (grid)	default value		
Experimental configuration		target parameters			
out leptons	electron (1) or muon (2)	1 or 2	2		
Target lenght	luminosity	-	15 cm		
Target composition (A,Z)	luminosity	single atoms	(1,1)		
Target = p (1) or n (2)	weight	1, 2	1		
Beam polariza- tion dilution factor	polarized cross sections	[0, 1]	0.8		
Kinematics	Kinema	tic range			
-t	Mandelstam variable	xx	[.05, .7]		
X_{bj}	Bjorken variable	xx	[.09, .3]		
Q^2	initial photon virtuality	xx	[1, 7]		
Q' ²	final photon vir- tuality	XX	[.09, .3]		
θ_{CM}	azimuthal angle of decay leptons	[40°, 140°]	[40°, 140°]		
Misc. options	Switch on/o	off weighting	g options		
Process	BH only unpol. (1), BH+DDVCS but not unpol. BH or DDVCS (2), BH+DDVCS and BH and DDVCS unpol. (3)	-	3 3		

Output files

- TCS_Tree: if TCS is generated
- DDVCS_Tree: if DDVCS is generated
- Debug_Tree: 500 first events, contains 4-vectors in various frames

Basic contain

- 4-vectors in lab frame for incoming and outgoing particles
- invariants and other kinematic variables
- polarization vectors and spin directions
- event weights (polarized, unpolarized, asymmetries).
- For TCS with quasi-real beam: "real photon" cross sections + actual cross sections including photon flux factor. Flux factor provided and additional angles.
- event number...

Tests on TCS: kinematics

⇒ more checks and figures on my wiki page or on demand

Tests on TCS: quasi-real

Photons Flux factor

Polar angle distributions

real photon (from sampling method egs5) (needs validation)

Ntemp
Entries 386/
Mean 0.124/
Std Dev 0.1204

300
100
0 0.2 0.4 0.6 0.8 1

θ.(°)

quasi-real gamma distrib

Tests on TCS: get generated target spin asymmetry (//) from polarized cross sections

⇒ Exercise to check the feasibility of extracting observables. Works OK. Need more statistic to bin the sample and compare to the generated actual asymmetries.

Tests for DDVCS: Angular distributions

beam polar and azimuthal angles (normalized by unpol. cross section*N_ev)

Cross sections and asymmetries for DDVCS

⇒expected for this kinematic, polarized cross sections for ↑ and ↓ reproduce the asymmetry

Where to find the generator, status and summary

"slow version" 3.0: for testing the generator, not appropriated for large data set

- public version available:

/work/halla/solid/mboer/public/Generator_publicversion/version3.0_slow

- All information about this version are in: /work/halla/solid/mboer/public/Generator publicversion/version3.0 slow/README

"fast version" 3.1: build ongoing. Wait for comments on version 3.0 before making it public.

- Generator wiki page (for reference, documents and explanations): https://hallaweb.jlab.org/wiki/index.php/DDVCS_and_TCS_event_generator
- Note written with all directives, I will circulate it with version 3.1

Status / Summary:

- generate BH+TCS and BH+DDVCS events
- new: polarization/spin included, different targets, polarized cross sections, corrections angles...
- checks on kinematic and results OK
- slow version public and can be used, fast version in build, note ready
- need improvement on linearly polarized TCS. Wait comments for other improvements coming with v3.1

History of past versions of this generator

Version 1: spring 2015

- counting rates for TCS and DDVCS LOI/proposal in 2015
- use grids for unpolarized cross sections: discretization effects visible, some approximations
- real and quasi-real photon beam for TCS

Version 2: 2015-2016

- interpolations / extrapolations to avoid discretization effects (% level accuracy),
- runs faster (several versions), several technical improvements,
- flags and calculations at various points to prevent "finding" points where divergencies may occur when calculating BH close to kinematic edges or specific phi+theta combinations
- asymmetries
- circulated to few persons to make some predictions, but it was a relatively slow version

New version (3.0): last updates

Warning: it is the "slow" version for checking the needs. Fast version upcoming after first comments (needs few weeks for building on the farm + some coding).

What is new for TCS

- polarization vectors for beam and for target: phi_s, theta_s (target) and Psi_s (linearly polarized beam) dependences
- transversally and linearly polarized targets included
- corrections in cross sections calculations for spin not aligned along beam or target axis
- spin asymmetries (raw) and polarized cross sections (corrected for dilutions factor (s) of beam and/or target)
- circular polarization rate vs energy
- non zero polar angle from sampling for bremsstrahlung photons in case of e- beam

What is new for DDVCS

- beam polarized cross section

New in general:

- faster than last "slow" version
- new options in input files
- option to run only BH or only BH+TCS (DDVCS) without BH or TCS (DDVCS) "alone" to go faster