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ABSTRACT

This CLAS Analysis note describes the analysis and final results for the large

data set collected by the EG1b experiment on deuterium. Longitudinally polarized

electrons at energies 1.6 - 1.7, 2.3-2.5, 4.2 and 5.7 GeV were scattered from longitu-

dinally polarized ND3 targets. The double spin asymmetry A‖ for the deuteron has

been extracted in the valence region from these data as a function of W and Q2 with

unprecedented precision. The virtual photon asymmetry A1 and the spin structure

function g1 can be calculated from these measurements by using parametrization to

the world data for the virtual photon asymmetry A2 and the unpolarized structure

functions F1 and R. The large kinematic coverage of the experiment (0.05 GeV2 <

Q2 < 5.0 GeV2 and 1.08 GeV < W < 3.0 GeV) helps us to better understand the

spin structure of the nucleon, especially in the transition region between hadronic

and quark-gluon degrees of freedom. The results on A1, g1 and the first moment Γ1
1,

as well as the higher moments Γ3
1 and Γ5

1, using the entire data set for the deuteron,

are presented in this note. In addition, parameterizations of the world data on the

asymmetries and the spin structure functions are studied to create and refine the

models on these quantities that can be used in various applications. Finally, the

neutron asymmetries are extracted from the combined proton and deuteron data.
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CHAPTER I

DATA ANALYSIS

This note describes the analysis of the EG1b experiment, focusing specifically on the

deuteron data. Below, we list all the analysis steps taken to go from the raw data

to the physics results. The EG1b proton data analysis and this analysis share many

aspects. Therefore, for those common parts of the analysis, we are going to refer

to the recently submitted proton analysis note [1] and only describe any differences.

The following list enumerates the step by step analysis procedures and the items

with bold-face will be described in more detail in the subsequent chapters.

1. EG1b Run summary

2. Data calibration and reconstruction

3. Helicity pairing

4. Quality checks and data selection - event rates, beam charge quality, effects

of beam charge asymmetry, polarization and asymmetry checks, faraday cup

corrections, raster.

5. Data binning

6. Particle identification - electron cuts, status flag, trigger bit, vertex cut, CC

cut, EC cuts, additional kinematic cuts, sector 5 correction.

7. Geometric and timing cuts on the Cherenkov signal

8. Fiducial cuts

9. Kinematic corrections - raster correction, average vertex position, torus current

scaling, beam energy correction, multiple scattering and magnetic field correc-

tions, energy loss correction, momentum correction, patch correction, overall

effect of kinematic corrections.

10. Dilution factors

11. Pion and pair symmetric background corrections

12. Extraction of the beam × target polarization
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13. Polarized background correction

14. Radiative corrections

15. Combining data

16. Models

17. Propagation of statistical errors for physics quantities

18. Systematic errors - background corrections, dilution factor, beam x target

polarization, radiative corrections, models

19. Final results for the deuteron

20. Data parameterizations to model the world data

21. Extraction of the neutron structure functions from the combined

proton and deuteron data

A list of common variables often used for the description of an electron-nucleon

scattering event is given in the following equations. It should be noted that the beam

axis is defined in the ẑ-direction and the polar scattering angle is labeled as θ while

the azimuthal angle is represented by φ.

Q2 = −q2 = 4EE ′ sin2 θ

2
= 2EE ′(1− cos θ) (1)

ν = E − E ′ = p · q
M

(2)

W =
√

(p+ q)2 =
√
M2 + 2Mν −Q2 (3)

x =
Q2

2p · q
=

Q2

2Mν
(4)

y =
p · (k − k′)

p · k
=
E − E ′

E
=
ν

E
(5)

γ =
2Mx√
Q2

=

√
Q2

ν
(6)

τ =
ν2

Q2
=

1

γ2
(7)

ε =
(
1 + 2(1 + τ) tan2(θ/2)

)−1
(8)
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η =
ε
√
Q2

E − εE ′
(9)

D =
1− εE′

E

1 + εR
(10)

where Q2 is the squared four-momentum and ν is the energy of the virtual photon,

W is the mass of final hadronic state, x is the Bjorken scaling variable and ε is the

relative flux of the two polarization states of the virtual photon (ratio of longitudinal

polarization to the transverse polarization). D is the depolarization factor that

represents how much of the incoming lepton’s polarization is transferred to the virtual

photon. R is the ratio of longitudinal to transverse virtual photo absorbtion.

To summarize the overall analysis procedure: The double spin asymmetry A‖ is

obtained from the measured experimental asymmetry Araw via,

A‖ =
C1

fRC

(
Araw
FDPbPt

Cback − C2

)
+ ARC (11)

where PbPt is the product of beam and target polarizations, FD is the dilution factor,

which accounts for the scattering from the unpolarized components of the target,

Cback represents the pion and pair symmetric background corrections, fRC and ARC

take care of the radiative effects while C1 and C2 corrects for the contributions from

the polarized background. The experimental asymmetry Araw is defined by:

Araw =
n− − n+

n− + n+
(12)

where n− and n+ are determined by counting the inclusive scattering events for each

helicity state and normalizing with the accumulated (live-time gated) beam charge

(Ne) for that helicity state:

n− =
N↑↓

N↑↓e
; n+ =

N↑↑

N↑↑e
(13)

with arrows indicating the relative spin orientations of the electron and the target

nucleus (or nucleon). The quantity Araw is extracted for each kinematic bin in Q2

and W in the resonance region and above, for each beam energy and detector setting

separately.

I.1 EG1B RUNS

During the experiment, a longitudinally polarized electron beam of various energies

ranging from 1.6 GeV to 5.7 GeV was incident on longitudinally polarized proton
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(NH3) and deuteron (ND3) targets. This ensures a good coverage of the entire reso-

nance region and above: 1.08 GeV < W < 3.0 GeV; 0.05 GeV2 < Q2 < 5.0 GeV2.

In order to increase the kinematic coverage, the torus current was also switched be-

tween inbending and outbending settings for some beam energies. In addition to the

NH3 and ND3 targets, data on the 12C target and the empty target (with only liquid

Helium) were also collected for each beam energy and torus setting. These runs were

used to estimate the unpolarized background contribution to the data. Occasional

runs were also taken on pure 15N target and used to monitor the effectiveness of the

background removal procedure using the 12C runs. Table 1 provides a simple sum-

mary of all runs taken together with corresponding beam and torus settings. Based

on Table 1, we separated the data into different configurations and analyzed each

set separately. We analyzed 11 different data sets for both ND3 and NH3 targets,

which are listed in Table 2. At the end, the results from these sets were combined,

as detailed later in this document

TABLE 1: EG1b run sets by beam energy and torus current.

Run Numbers Beam Energy(GeV) Torus Current(A)

25488-25559; 25669-26221 1.606 +1500
26222-26359 1.606 −1500
28512−28526 1.723 +1500

27644-27798; 28527-28532 1.723 −1500
27205-27351 2.286 +1500
28001-28069 2.561 +1500

27799-27924; 27942-27995 2.561 −1500
27936-27941 2.792 −1500

28074-28277; 28482-28494; 28506-28510 4.238 +2250
28280-28479; 28500-28505 4.238 −2250
27356-27364; 27386-27499 5.615 +2250

27366-27380 5.615 −2250
27069-27198 5.725 +2250
26874-27068 5.725 −2250

26468-26722; 26776-26851 5.743 −2250
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TABLE 2: Analyzed data sets by target, listing the beam energy EB and the torus
current IT . Throughout each data set, there are also occasional 12C and empty target
runs, used for background analysis.

ND3[EB(GeV), IT (A)] NH3[EB(GeV), IT (A)]
1.606, +1500 1.606, +1500
1.606, −1500 1.606, −1500
1.723, −1500 1.723, −1500
2.561, +1500 2.386, +1500
2.561, −1500 2.561, −1500
4.238, +2250 4.238, +2250
4.238, −2250 4.238, −2250
5.615, +2250 5.615, +2250
5.725, +2250 5.725, +2250
5.725, −2250 5.725, −2250
5.743, −2250 5.743, −2250
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I.2 DATA BINNING

The goal of our experiment is to determine asymmetries as a function of two kinematic

variables: the squared four-momentum transfer Q2 and the invariant mass W . Once

we have extracted physics quantities as function of these two variables, we can express

them as a function of any other pair of kinematic variables as well. Another common

pair is (Q2,x), where x is the Bjorken scaling variable. While converting the (Q2,W )

pair into (Q2,x), we used kinematic values directly obtained from data, which are

averaged over the amount of data observed for that specific kinematic bin. The W

bins are 10 MeV wide. Binning in Q2 is logarithmically calculated by using the

formula:

Bin Number = n = int

(
13 log10

(
Q2

C
1027/13

))
, (14)

where,

C =
(1 + 10−1/13)

2
. (15)

From these equations, we can calculate Q2
min and Q2

max for each bin by using the

following definitions:

Q2
min = C × 10(n−27)/13 (16)

Q2
max = C × 10(n+1−27)/13 (17)

Table 3 show the Q2 bins of the EG1b data together with the minimum and

maximum value for each bin. The table also shows the arithmetic and geometric

average of each bin. All kinematical variables of interest (including W and Q2, but

also x, E ′, ε, η and D) were averaged over each bin, using the measured counts as

statistical weight. Therefore, the average values of these kinematic variables don’t

necessarily agree with the values at the bin centers.
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TABLE 3: Q2 bins for EG1b experiment

Bin Q2min Q2max geoAve ariAve
1 0.009188388 0.010968883 0.0100 0.0101
2 0.010968883 0.013094397 0.0120 0.0120
3 0.013094397 0.015631785 0.0143 0.0144
4 0.015631785 0.018660860 0.0171 0.0171
5 0.01866086 0.022276898 0.0204 0.0205
6 0.022276898 0.026593641 0.0243 0.0244
7 0.026593641 0.031746867 0.0291 0.0292
8 0.031746867 0.037898668 0.0347 0.0348
9 0.037898668 0.045242545 0.0414 0.0416
10 0.045242545 0.054009494 0.0494 0.0496
11 0.054009494 0.064475272 0.0590 0.0592
12 0.064475272 0.076969073 0.0704 0.0707
13 0.076969073 0.091883882 0.0841 0.0844
14 0.091883882 0.109688832 0.100 0.101
15 0.109688832 0.130943966 0.120 0.120
16 0.130943966 0.156317848 0.143 0.144
17 0.156317848 0.186608595 0.171 0.171
18 0.186608595 0.222768982 0.204 0.205
19 0.222768982 0.265936407 0.243 0.244
20 0.265936407 0.317468671 0.291 0.292
21 0.317468671 0.378986684 0.347 0.348
22 0.378986684 0.452425451 0.414 0.416
23 0.452425451 0.540094935 0.494 0.496
24 0.540094935 0.644752718 0.590 0.592
25 0.644752718 0.769690734 0.704 0.707
26 0.769690734 0.918838820 0.841 0.844
27 0.91883882 1.096888321 1.00 1.01
28 1.096888321 1.309439656 1.20 1.20
29 1.309439656 1.563178475 1.43 1.44
30 1.563178475 1.866085950 1.71 1.71
31 1.86608595 2.227689819 2.04 2.05
32 2.227689819 2.659364071 2.43 2.44
33 2.659364071 3.174686710 2.91 2.92
34 3.17468671 3.789866839 3.47 3.48
35 3.789866839 4.524254507 4.14 4.16
36 4.524254507 5.400949352 4.94 4.96
37 5.400949352 6.447527179 5.90 5.92
38 6.447527179 7.696907344 7.04 7.07
39 7.696907344 9.188388200 8.41 8.44
40 9.1883882 10.968883209 10.0 10.1
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I.3 DILUTION FACTOR

Since we are interested in scattering events from polarized nucleons, the asymmetries

must be corrected for the contributions from unpolarized background. These contri-

butions mainly come from the (nearly - see below) unpolarized 15N nucleus in the

target material (ND3), the liquid helium bath that surrounds it for cooling and the

target windows that keep the whole apparatus together. For this purpose, we define

a quantity called dilution factor, which is the fraction of events scattered from the

polarized deuterons. In order to explain the dilution factor better, we consider the

raw asymmetry as described in Eq. 12. In this equation, n− and n+ are determined

by counting the inclusive scattering events for each helicity and normalizing with the

accumulated beam charge. During the counting procedure, we have no way to know

if the event is coming from the polarized target or from the unpolarized background.

However, since the unpolarized contribution is the same for both helicities, it cancels

out in the numerator. The denominator, on the other hand, is heavily diluted by the

background contribution. Therefore, we need to correct the denominator such that:

Aundil =
n− − n+

n− + n+ − nB
(18)

where nB stands for the count of the background events. Based on this approach,

we can define a dilution factor (FD) to correct the asymmetry for the background

contribution:

FD =
n− + n+ − nB
n− + n+

=
nA − nB
nA

= 1− nB
nA

, (19)

where nA represents the total count of events from all sources in the beam path.

Then we can write the undiluted asymmetry in terms of the diluted asymmetry and

the dilution factor defined in Eq. (19) as:

Aundil =
Araw
FD

. (20)

In a naive approach, when we consider the 15ND3 target, we see that there are 3

polarized deuterons (6 polarized nucleons) for every 21 nucleons. Therefore, the di-

lution factor, which was defined as the fraction of events scattered from polarized

target nucleons, would be 6/21. For a more precise approach, this number would

be slightly modified by the difference in cross section for scattering off proton ver-

sus scattering off neutron, and nuclear effects. However, the additional material in

the beam path, mainly the target windows and the liquid helium bath, makes the

determination of the dilution factor more complicated.
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TABLE 4: Target parameter definitions. The subscript X represents different target
types used during the experiment. The following acronyms are used for different
target types throughout this section: N for nitrogen; A for ammonia; T (or D) for
deuteron; C for carbon and He for liquid helium. In addition, Al is aluminum, K
is kapton and F represents all kapton and aluminum foils. All counts (represented
by nX ) are normalized to the corresponding total integrated beam charge for each
target. The quantity f is introduced for convenience. It assumes σF ≈ σC so that
the foil mass thickness can be expressed as a fraction of carbon mass thickness. This
quantity is used in later sections while calculating the target lengths.

Parameter Definition

L Total length of the target cell
lX Length of target X
ρX Density of target X
σX Cross section of target X
nX Measured counts from target X
n′C = ρC lCσC Expected counts scattered only from 12C
n′He = ρHeσHe Expected counts per 1 cm length of liquid 4He
n′N = ρN lNσN Expected counts scattered only from 15N
n′A = ρAlAσA Expected counts scattered from ammonia
f = ρF lF/ρC lC Contribution to count rate from all Aluminium

(Al) and Kapton (K) foils combined, expressed as
a fixed fraction of the contribution from 12C

The dilution factor analysis for the proton and the deuteron data were developed

together in parallel. As a result, most of the calculations are the same as described

in the proton analysis note [1]. Two different calculation methods were utilized, first

using the radiated cross-section models and the second using the data parametriza-

tion method. Both of these methods are described in detail in the proton analysis

note. The general steps in the analysis include combining data from different runs

and corrections performed on empty target counts. Afterwards, the calculations of

the total target and ammonia target lenghts and calculation of the final dilution fac-

tors were performed individually for both methods introduced earlier and compared

for systematic error estimates. In the end, the cross section model method was used

for all asymmetries in the inelastic region, while it gave a less good description of the

quasi-elastic region, where the data-driven method was used. (This in turn is only

relevant for the determination of PbPt in one case, see next Section).
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The only difference in the case of the deuteron dilution factor calculations come

from the different number of polarized and unpolarized nucleons in the ND3 target,

which are 6 polarized and 21 unpolarized nucleons instead of 3 and 15 used in the

NH3 case. This modifies the total cross-section of the ammonia target. As a result,

the overall dilution factor formula for the ND3 target is written as:

FD = 1− 1

nA

(
nE − lAn′He +

ρAlA
ρC lC

σN
σC

n′C

)
. (21)

when we use the data parametrization method and becomes:

FD =
nT
nA

=
6
21
ρAlAσT

F + ρAlA( 6
21
σT + 15

21
σN) + ρHe(L− lA)σHe

. (22)

when we use radiated cross-section method. The same change in the ammonia cross-

section were also applied while calculating the ammonia target length. Table 5

summarized the densities of various target components for the case of ND3.

TABLE 5: Densities of the target materials in the EG1b experiment. Values are
from Refs. [114] and [115].

Target Material Density (g/cm3) Density (mol/cm3)

ammonia (NH3) 0.917 0.0508
ammonia (ND3) 1.056 0.0502

carbon (12C) 2.17 0.180
nitrogen-15 (15N) 1.1 0.073
liquid helium (He) 0.145 0.0362

kapton (K) 1.42 0.00371
aluminum (Al) 2.69 0.0997

Approximate target lengths from physical measurements are given in Table 6. The

value for the window foil material changes after the run 27997 because of the addition

of a Kapton (K) piece after this run. The true length of the ammonia target (15ND3),

which is represented by lA, depends on the packing fraction (the percentage of volume

occupied by ammonia beads in the total target volume). The liquid Helium exists

in all target types since it is used to keep the target at low temperature. Its length

depends on how much of the liquid Helium was displaced by the other target material

that it is hosting. The length of the Kapton (K) and the Aluminum (Al) targets are

known from physical measurements during the experiment. Since the dilution factor
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TABLE 6: Lengths of the target materials in the EG1b experiment. Values are from
Refs. [114] and [115].

Target Material Approximate Length (cm)

total (L) 1.9
ammonia (NH3) 0.6
ammonia (ND3) 0.6

carbon (12C) 0.23
carbon (12C) 0.22 (for 15N target runs)

nitrogen-15 (15N) 0.5
liquid helium (He) L minus solid target material

kapton (K) 0.0304(0.0384 after 27997)
kapton (K) 0.0354 (for 15N target runs)

aluminum (Al) 0.0167

is very sensitive to these values, the target lengths for the ammonia targets were

studied explicitly to determine the correct FD. The proton analysis note [1] describes

how the target lengths are determined. Table 7 shows the values of some target

parameters used for the calculations of the relevant quantities. We reproduce plots

of various quantities of interest that enter the dilution factor determination below

since they vary slightly from the proton case; however, in all cases the procedure was

the same.

TABLE 7: Target parameter values

Quantity Value Comment

ρC lC 0.498 g/cm2 = 0.0415 mol/cm2 mass thickness of carbon
ρC lC 0.476 g/cm2 = 0.0397 mol/cm2 for 15N target runs
ρK lK 0.0432 g/cm2(0.055 g/cm2 after 27997) mass thickness of Kapton
ρK lK 0.0503 g/cm2 for 15N target runs
ρAllAl 0.0450 g/cm2 mass thickness of Al
ρF lF 0.0882 g/cm2(0.0996 g/cm2 after 27997) mass thickness of Al + K foils
ρF lF 0.0952 g/cm2 for 15N target runs
f 0.177(0.200 after 27997) ρF lF/ρC lC
f 0.235 for 15N target runs
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TABLE 8: Calculated total target length L for different data sets in the EG1b
experiment are shown for both methods. Method 2 results were used for the final
analysis. Lavg is used only for 12C/15N analysis [113].

Beam Energy (GeV) Torus Setting L(cm)-Method 1 L(cm)-Method 2

1.606 + 1.93 1.90
1.606 − 1.82 1.85
1.723 − 1.87 1.87
2.286 + 1.76 1.77
2.561 + 1.93 1.92
2.561 − 1.84 1.86
4.238 + 2.01 2.00
4.238 − 2.04 2.05
5.615 + 1.77 1.78
5.725 − 1.79 1.83
5.743 + 1.93 1.95
5.743 − 1.82 1.87

Lavg
12C/15N 1.89 1.90

TABLE 9: Values of the effective ammonia target length (lA), using the two different
methods described in the text. The error bars reflect only the error on the statistical
fit, not the true uncertainty on the value.

Beam E Torus lA(cm)-Method 1 lA(cm)-Method 2)

1.606 + 0.6611 ± 0.0005 0.6865 ± 0.0002
1.606 − 0.6394 ± 0.0022 0.6755 ± 0.0005
1.723 − 0.5926 ± 0.0008 0.6262 ± 0.0002
2.561 + 0.5887 ± 0.0009 0.5974 ± 0.0004
2.561 − 0.6179 ± 0.0003 0.6314 ± 0.0002
4.238 + 0.5977 ± 0.0009 0.5978 ± 0.0004
4.238 − 0.6084 ± 0.0003 0.6130 ± 0.0001
5.615 + 0.6045 ± 0.0011 0.6049 ± 0.0005
5.725 + 0.5947 ± 0.0013 0.5897 ± 0.0006
5.725 − 0.5719 ± 0.0005 0.5703 ± 0.0003
5.743 − 0.7226 ± 0.0006 0.7232 ± 0.0003
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FIG. 1: Total target length, L, calculated using the EG1b data, shown as a function
of W averaged over Q2 bins. A W cut of 1.40 GeV is incorporated for the final value
of L to remove the effects of the ∆-resonance. Plot is courtesy of R. Fersch.
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FIG. 2: Total target length, L, calculated using the radiated cross-section models,
shown as a function of W , averaged over Q2 bins (0.317 < Q2 < 0.645) for the 4.2
GeV inbending data set. Plot is courtesy of R. Fersch.
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FIG. 3: ND3 effective target length in cm (calculated from method 1) as a function
of W for the 1.6 GeV inbending (top) and 4.2 GeV inbending (bottom) data sets are
shown.
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FIG. 4: ND3 effective target length (in cm) as a function of W for the 1.6 GeV
(top) and 4.2 GeV (bottom) inbending data sets. Different colors represent different
helicity configurations. The calculations were made by using method 1.
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the 5.8 GeV outbending data sets. These values are calculated using the radiated
cross section model. Plot is courtesy of R. Fersch.
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FIG. 6: Dilution factors as a function of W , shown at four different beam energies
(1.6+ (top left), 2.5− (top right), 4.2− (bottom left) and 5.7− (bottom right)). The
results from method 1 are shown as the red data points while the method 2 results are
overlayed as blue lines. In the quasi-elastic region (W < 1.1 GeV), the data-driven
method 1 was considered more reliable; however, in the end we only used data above
W = 1.1 GeV where the model-driven method (blue line) is more accurate.
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FIG. 7: Dilution factors as a function of Q2, shown for several W bins, for the 4.2−
(top) and 5.7− (bottom) data sets. There is a slight Q2 dependence of the dilution
factor for some W regions.



19

I.4 BEAM AND TARGET POLARIZATION

In order to determine the double spin asymmetry, the raw asymmetry from the count

rates needs to be corrected for the net polarization. Therefore the product of the

beam and target polarization is required. During the experiment, the beam polar-

ization was measured by using the Moller Polarimeter and the target polarization

was monitored by the Nuclear Magnetic Resonance (NMR) system. In the EG1b

experiment, the electron beam polarization was very stable and the measurements

from the Moller Polarimeter are dependable. On the other hand, the target polariza-

tion was not quite stable. Moreover, the NMR coils are located outside the target,

and are therefore more sensitive to the outer layers of the target material. However,

the polarization of the target can change within the target volume, especially since

the regions of the target exposed to the beam are depolarized more quickly. To pre-

vent quick and local depolarization of the target material, the beam is rastered over

the target area in a spiral motion. However, the rastering is not always perfect and

especially the outer layer of the target, to which the NMR is most sensitive, is not effi-

ciently rastered. Therefore, it is generally expected that NMR values are superficially

higher than the true polarization of the target. Moreover, there are other technical

uncertainties on the NMR readings that are not well understood. As a result, we

need a reliable method of determining the true beam × target polarization.

The most reliable method to determine the polarization is to extract the infor-

mation from the data itself. This extraction is based on the fact that the theoretical

asymmetry for elastic and quasi-elastic events is well determined. Once the theo-

retical asymmetry is known, the beam and target polarization can be determined

according to:

PbPt =
Aquasi−elmeas

FD Aquasi−eltheo

(23)

where FD stands for the dilution factor to remove the effect of scattering from un-

polarized nucleons in the target. Therefore, what we need to do is to extract the

asymmetry by using quasi-elastic scattering from the deuteron, correct it for the

background contributions and then divide it by the theoretical prediction. For the

EG1b experiment, this was done separately for each Q2 bin. Then, the PbPt values

from all Q2 bins with reasonable statistical error were averaged to determine the final

value, while checking that the “Q2-dependence” was flat within statistical errors.
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I.4.1 Theoretical Asymmetry For Quasi-Elastic Scattering from the

Deuteron

The elastic double-spin asymmetry A|| for a proton or neutron can be calculated by

using the electric and magnetic form factors GE and GM of the respective nucleon.

The virtual photon asymmetries for elastic scattering are simply [2]:

A1 = 1 (24)

and

A2 =
√
R(el) =

√
Q2

ν

GE(Q2)

GM(Q2)
. (25)

R(el) represents the structure function R (the ratio of longitudinal to transverse cross

section) in the elastic region. Using Q2 = 2Mν for elastic events, the double spin

asymmetry for elastic scattering can be calculated as:

A|| =
2τG[M

E
+G (τ M

E
+ (1 + τ) tan2(θ/2))]

1 +G2 τ/ε
, (26)

where τ = Q2/4M2, G = GM/GE, E is the beam energy, M is the mass of the

nucleon and θ is the polar scattering angle of the electron. For the electromagnetic

form factors we used the latest parametrization by J. Arrington [117].

For the deuteron, one has to express the asymmetry in the quasi-elastic region

(ν ≈ Q2/2Mp) in terms of the contributions from its constituent nucleons. There are

in principle two ways to do this: In the first method, quasi-elastic events are selected

by detecting only the scattered electrons. This is called the inclusive method. In

this case, the weighted contributions from both proton and neutron contribute to

the observed quasielastic asymmetry A||. Alternatively, one detects the knocked-out

proton in coincidence with the scattered electron, using kinematic cuts to ascertain

that it carries (nearly) all of the 4-momentum transfer ν, ~q. This is the “exclusive”

method. In this case, only the proton inside deuterium contributes (to a very good

approximation), and one can use directly the asymmetry Eq. 26 for the proton only,

with small corrections for its Fermi motion and D-state contributions to extrapolate

to the deuteron polarization. In the next Section, we discuss the event selection for

both these methods in detail.
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I.4.2 Extraction of Quasi-Elastic Asymmetry from the Data

For both methods discussed above, the first step is to select electrons that fall within

the quasi-elastic region. For each detected electron, the final state mass W is recon-

structed and a specific cut on W depending on the data configuration (beam energy

and torus settings) is applied to select the quasi-elastic events. Table 10 lists the

applied cuts for each configuration.

TABLE 10: W limits in GeV for (quasi-)elastic event selection in the inclusive (incl)
and exclusive (excl) methods.

Ebeam incl Wmin incl Wmax excl Wmin excl Wmax

1.606 0.90 0.98 0.88 0.98
1.723 0.90 0.98 0.88 0.98
2.286 0.90 0.99 0.87 0.99
2.561 0.90 0.99 0.87 0.99
4.238 0.90 0.99 0.86 1.02
5.615 0.88 1.00 0.84 1.02
5.725 0.88 1.00 0.84 1.02
5.743 0.88 1.00 0.84 1.02

Inclusive Method

The double spin asymmetries of the proton and the neutron were calculated according

to Eq. (26) using the parameterization given by Arrington. After that, the deuteron

quasi-elastic asymmetry was determined from that of the proton and the neutron as

the weighted average:

AD|| =
σelp A

el
p + σelnA

el
n

σelp + σeln

(
1− 3

2
wD

)
(27)

where wD is the probability of finding deuteron in D-state. We also used a

more detailed calculation incorporating the deuteron wave function, including the

momentum-dependent nucleon polarization in deuterium. The two methods yielded

very similar results.

The first step in applying this method to the data is to identify the electrons.

The set of cuts we used for this purpose is shown in Table 11. The advantage of

the inclusive method is its statistical power. The amount of the quasi-elastic events
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determined from inclusive scattering is very high compared to the exclusive method.

However, the higher statistics comes with a price: more background contribution.

The main challenge of this method is to isolate the quasi-elastic peak and to correctly

remove the background. We used the data-driven method to calculate the dilution

factor to remove the background from inclusive quasi-elastic events.

TABLE 11: Electron cuts for PbPt calculation with the inclusive method.

particle charge = -1
good helicity selection
one electron per event

p ≥ 0.01EB
p ≤ EB

0 ≤ flag ≤ 5 or 10 ≤ flag ≤ 15
triggerbit cut

CCnphe > 2.0 if p ≤ 3.0 GeV or CCnphe > 0.5 if p > 3.0 GeV
ECtot/p > 0.20 if p ≤ 3.0 GeV or ECtot/p > 0.24 if p > 3.0 GeV

ECin > 0.06
-58.0 ≤ zvertex ≤ -52.0

7.5◦ < θ < 49◦

ν > 0 GeV
sector 5 cut

loose fiducial cuts
geometric-timing cuts on the CC

W cut (see Table 10)

Another crucial point was to define the quasi-elastic region. We varied the W

cuts and monitored the resulting PbPt values and their statistical errors. We began

with a tight cut, which results in a large statistical error and then we loosened the

cut step by step until the PbPt value stabilized. Then we also moved the cut region

by an offset and monitored the PbPt values in order to choose the region where the

values are most stable. We performed this procedure for each data configuration.

Table 10 lists the final W cuts for different beam energies.

Exclusive Method

In the exclusive method, we selected quasi-elastic ed → epn events by identifying

the electron and recoil proton in coincidence. The electron cuts applied for this case

are slightly different than the previous case. In particular, the cuts on the EC and
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CC can be loosened because the requirement for a proton within collinearity and

missing energy cuts restricts our particle selection. The final electron cuts are listed

in Table 12. For the proton, we used a timing cut of -0.8 ns < ∆t < 0.8 ns to gain

more events. In addition, the cuts applied for the selection of quasi-elastic events are

listed in Table 13.

The advantage of the exclusive method is that the background contribution is

small since we apply strict kinematic constraints on the data. However, because the

proton is not always detected, this approach generally reduces the statistics, which

results in a higher statistical error on the extracted PbPt value in comparison to the

inclusive method. In order to remove the background contribution from the ND3

data, we used subtract an appropriately scaled spectrum from carbon runs. Fig. 8

shows the distributions of the azimuthal angle differences between the protons and

the electrons (∆φ = φp−φe) in quasi-elastic events for a few data sets with the ND3

target. Also, Fig. 9 shows the W distributions for the same events. The scaling

factor for the carbon data was determined by using the φ distribution of the quasi-

elastic events. The φ ranges used for this purpose were 160◦ ≤ ∆φ ≤ 170◦ and 190◦

≤ ∆φ ≤ 200◦.

TABLE 12: Electron cuts for PbPt calculation with the exclusive method.

particle charge = -1
good helicity selection
one electron per event

p ≤ EB
0 ≤ flag ≤ 5 or 10 ≤ flag ≤ 15

triggerbit cut
CCnphe > 1.0

ECtot/p > 0.15 if p ≤ 3.0 GeV or ECtot/p > 0.20 if p > 3.0 GeV
-58.0 ≤ zvertex ≤ -52.0

8.5◦ < θ < 49◦

sector 5 cut
ν > 0 GeV

I.4.3 Final PbPt Values

For each target and beam polarization in the EG1b experiment, the PbPt values

from inclusive and exclusive methods were determined as described above for each
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TABLE 13: Cuts for the selection of quasi-elastic events for PbPt calculation. An
electron and a proton were required with at most one neutral particle in the event in
order not to loose events with accidental signals in any of the detectors (by a cosmic
ray or a stray photon).

good helicity selection
particles in the event = 2 (or 3 with one neutral particle)

electron found in the event
proton found in the event
|E[miss]| ≤ 0.08 GeV
|θp − θQ| < 2◦

θQ < 49◦

-3◦ < |φp − φe| - 180◦ < 3◦

W cut (see Table 10)

Q2 bin. Some sample plots can be seen in Figs. 10-14. In the end, the PbPt values

are averaged over Q2 bins as:

PbPt =
∑
Q2

PbPt(Q
2)

σ2
PbPt

(Q2)
/
∑
Q2

1

σ2
PbPt

(Q2)
(28)

σPbPt = 1/
∑
Q2

1

σ2
PbPt

(Q2)
(29)

leaving out the Q2 bins with high statistical errors (the ones with statistical error

larger than 0.5). The Q2 bin ranges for different data configurations can be seen in

Table 14. The final values are listed in Table 15 for different data sets and target

polarizations. Then the values were compared from four different independent studies

of PbPt [118]. The values agree well within statistical fluctuations. After careful

considerations, it was agreed that the exclusive method in general gave more reliable

results. Therefore, for the final analysis, exclusive values were used except for the

1.6 and 1.7 GeV outbending data sets, for which we used the inclusive PbPt values

because the exclusive values had large statistical errors. The error on the inclusive

method is rather small because of the statistical power of the method. Therefore,

we did not use the statistical error for those data but instead assigned a 10% error

on the value, which is a reasonable estimate made by comparing the independent

studies on PbPt.
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FIG. 8: Distribution of azimuthal angle difference between the electron and the
proton (∆φ = φp − φe) in exclusive quasi-elastic events for different data sets with
the ND3 target. The top row is from the 1.6 GeV positive (left) and negative (right)
target polarizations. The bottom row is the same for the 2.5 GeV data set. The
red solid line (Target) is the raw inclusive data from the ND3 target. The blue solid
line (Backg) represents the 12C data, which is scaled to the ND3 data (green dots)
and subtracted from it. The final quasi-elastic distribution is shown with black dots
(Diff ). The range -3◦ < |φp−φe| - 180◦ < 3◦ was selected for the calculation of PbPt.

I.4.4 PbPt for Weighting Data from Different Helicity Configurations

We have various data sets with different beam energies, torus currents and target

polarizations. In order to combine the asymmetries from these data sets, we would

like to give them different weights according to their overall statistical precision. In

particular, while combining the data sets with opposite target polarizations, we know

that the two sets can have a rather significant difference in the magnitude of their

target polarizations. An optimal strategy requires us to include this information in

our statistical weighting. However, our method of determining the product of beam

and target polarization PbPt (using elastic or quasi-elastic scattering) will not yield
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FIG. 9: W distributions for exclusive ep quasi-elastic events for different data sets,
showing the background removal for the ND3 target. The top row is from the 1.6
GeV positive (left) and negative (right) target polarizations. The W cut applied on
this data set to calculate PbPt was 0.88 ≤ W ≤ 0.98. The bottom row is the same
for the 2.5 GeV data. The W cut was 0.87 ≤ W ≤ 0.99. The explanations for the
curves and data points are provided in the caption of Fig. 8.

TABLE 14: Q2 limits in GeV for the PbPt average.

Ebeam Torus incl Q2
min incl Q2

max excl Q2
min excl Q2

max

1.606 + 0.20 1.00 0.71 1.00
1.606 − 0.24 0.71 0.71 0.84
1.723 − 0.17 0.84 0.71 1.00
2.561 + 0.29 2.00 1.00 2.00
2.561 − 0.29 1.86 1.00 1.70
4.238 + 0.59 3.50 1.40 2.90
4.238 − 0.59 3.50 1.40 3.50
5.615 + 1.20 5.90 1.70 6.00
5.725 + 0.84 5.90 1.70 5.90
5.725 − 0.84 5.90 1.70 5.90
5.743 − 0.84 5.90 1.70 5.90
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FIG. 10: PbPt values for the 2.5 GeV inbending data sets for ND3 target. The plot
shows the resulting PbPt values for the Q2 bins with available data. The results from
the exclusive (blue square) and the inclusive (brown circle) methods are shown. The
corresponding linear fits to the data are also shown as lines: the solid blue line is
for the exclusive and the dashed brown line is for the inclusive methods. The results
of the linear fits are shown. Note that these results from the linear fits are not the
actual PbPt values but they are practically the same up to 3rd significant figure. In
addition, the relative weighting factor described in section I.4.4 is also written on
each plot.
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FIG. 11: PbPt values for different data sets for ND3 target.

sufficient statistical accuracy over a single “group” to make this feasible. Therefore,

we need a more precise method at least to estimate the relative magnitude of PbPt

for a given data set.

Our approach is to extract an estimate of PbPt using our model of the existing

spin structure function data together with the already determined asymmetries for

each bin for a given group. This does not have to be too precise (and of course may

be off by an overall scale factor, since we don’t know whether our existing model has

the correct overall scale). However, it is sufficient to give us a relative magnitude of
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FIG. 12: PbPt values for different data sets for ND3 target.
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FIG. 13: PbPt values for different data sets for ND3 target.
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FIG. 14: PbPt values for different data sets for ND3 target.
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TABLE 15: PbPt values from different methods for all data sets with ND3 target. EB
is the beam energy, IT refers to torus polarity (inbending or outbending) and T.Pol
is the target polarization sign. The results from the exclusive (excl) and the inclusive
(incl) are listed together with the corresponding errors. The values given in the rela
column are only used as statistical weighting factors for each set as described in
section I.4.4. For the 1.6 and 1.7 GeV outbending data, the inclusive method results
were used with 10% error assigned. For the other data sets, the exclusive method
results were used for the final analysis.

EB IT T.Pol excl excl Err incl incl Err rela rela Err

1606 i + 0.23644 0.01326 0.21481 0.00425 0.20581 0.00324
1606 i − -0.18544 0.01227 -0.16114 0.00398 -0.15800 0.00310
1606 o + 0.16199 0.04238 0.17735 0.00863 0.17037 0.00531
1723 o + 0.16196 0.03588 0.16866 0.00696 0.14782 0.00459
1723 o − -0.26576 0.03709 -0.17450 0.00712 -0.16429 0.00470
2561 i + 0.26900 0.01799 0.22716 0.00914 0.19565 0.00566
2561 i − -0.21256 0.01679 -0.20686 0.00849 -0.17591 0.00526
2561 o + 0.30754 0.02815 0.25168 0.00960 0.22654 0.00566
2561 o − -0.21734 0.02532 -0.20961 0.00848 -0.18773 0.00501
4238 i + 0.24728 0.02994 0.22229 0.02139 0.18059 0.00807
4238 i − -0.18915 0.03048 -0.15489 0.02131 -0.15860 0.00806
4238 o + 0.15641 0.02065 0.16111 0.00989 0.15101 0.00462
4238 o − -0.18185 0.03634 -0.17183 0.01771 -0.13286 0.00831
5615 i + 0.25651 0.04793 0.18969 0.03941 0.17430 0.01002
5615 i − -0.28254 0.05152 -0.21685 0.04129 -0.15815 0.01061
5725 i + 0.21415 0.04658 0.14212 0.04508 0.13318 0.00910
5725 i − -0.16873 0.06170 -0.09980 0.06277 -0.15301 0.01269
5725 o + 0.18149 0.05974 0.15434 0.03507 0.16153 0.01068
5725 o − -0.12594 0.05242 -0.15947 0.03008 -0.14486 0.00915
5743 o + 0.18579 0.04022 0.15101 0.02616 0.12969 0.00742
5743 o − -0.20827 0.06619 -0.10362 0.03928 -0.09480 0.01113

PbPt, that we will call Prel.

This requires to use the “models” to determine a “predicted” A|| for each bin

where the group under investigation has data. Above W = 1.08 GeV this was done

with a simple code that uses the A1, A2 and R from “models” and combines them into

Amodel|| = D(A1+ηA2), using the correct beam energy and electron scattering angle for

each bin to calculate the required kinematic quantities like ε, η and D. For kinematic

bins below W = 1.08 GeV, we used the (quasi-)elastic inclusive asymmetries instead.
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These were calculated according to Eqs. (26) and (27). It should be noted that, bins

below W = 0.9 GeV are not used in this process since the data in these bins are

largely unpolarized and/or have large random errors.

At this point, we can calculate an estimate for Prel for each bin in W > 0.9 GeV

and Q2 for a given data set (G) as follows:

Prel(W,Q
2) =

AGraw(W,Q2)

FDAmodel||
, (30)

where AGraw represents the raw asymmetry of the data set (all runs combined) and

FD is the dilution factor for the bin in question. The error on this quantity, for just

one kinematic bin, is

σPrel
=

σAG
raw

FDAmodel||
. (31)

We can then combine the information from all [Q2,W ] bins with W > 0.90 GeV by

the usual statistically weighted mean:

PG
rel =

∑
bins

Prel/σ
2
Prel∑

bins

1/σ2
Prel

, (32)

with statistical error

σ2
PG
rel

=
1∑

bins

1/σ2
Prel

. (33)

From Eqs. (30) and (31), we can deduce that

Prel
σ2
Prel

= FDA
model
||

AGraw
σ2
AG

raw

, (34)

so, the last equation can also be written as

PG
rel =

∑
bins

FDA
model
|| AGraw/σ

2
AG

raw∑
bins

(FD)2(Amodel|| )2/σ2
AG

raw

, (35)

which avoids any need to divide by (potentially) small (zero) numbers.

While combining the two different data sets with opposite target polarizations,

we multiply the total count for each set with the square of its relative PbPt, given

by PG
rel, to determine its weight. Then this weight is divided by the sum from both
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data sets to determine the scaling factor associated with each set. Then, this scaling

factor is used whenever we need to sum quantities from the two data sets. The raw

asymmetries and the true PbPt values are summed in this way while combining the

data sets with opposite target polarizations. More detailed explanations on the data

combining procedure is given in section I.8.

TABLE 16: PbPt values for the ND3 target averaged over opposite target polariza-
tions, from three different methods. EB is the beam energy, IT refers to torus polarity
(inbending or outbending).

EB IT excl 1 Err excl 2 Err incl Err

1606 i 0.2164 0.0093 0.2246 0.0083 0.1938 0.0030
1606 o 0.1619 0.0423 0.2211 0.0353 0.1773 0.0086
1723 o 0.2180 0.0259 0.2244 0.0197 0.1718 0.0050
2561 i 0.2417 0.0123 0.2426 0.0108 0.2173 0.0062
2561 o 0.2655 0.0191 0.2597 0.0157 0.2321 0.0064
4238 i 0.2219 0.0214 0.1871 0.0182 0.1929 0.0152
4238 o 0.1613 0.0180 0.1591 0.0166 0.1632 0.0086
5615 i 0.2675 0.0352 0.2380 0.0312 0.2012 0.0286
5725 i 0.1957 0.0373 0.1821 0.0306 0.1249 0.0369
5725 o 0.1524 0.0395 0.1803 0.0374 0.1570 0.0229
5743 o 0.1901 0.0349 0.1769 0.0341 0.1419 0.0224

I.5 POLARIZED BACKGROUND CORRECTIONS

The dilution factor corrects for scattering off unpolarized “non-target” nucleons or

nuclei in the target material. However, some of these might be polarized and, there-

fore, affect the observed asymmetry. This section explains the corrections required

to account for the effects of the polarized background on the measured asymmetry.

The proton and deuteron targets are embedded in 15NH3/15ND3 molecules. As

the targets are polarized by the DNP process, surrounding nucleons from 15N can

also become polarized. In addition, there is an approximately 2% contamination of
14N, which is also polarizable. Moreover, a small percentage of isotopically contami-

nated ammonia molecules such as NH3 and ND2H1 also introduce polarizable single

protons. Finally, there is a possibility that the target contains some unpolarized pure

hydrogen atoms, for instance in the form of frozen-in water (H2O). The presence of

contaminating free protons (both polarized and unpolarized) has been studied in
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detail in CLAS Note 2012 - 004 [119].

Although the effect of the polarized background on the measured asymmetry

is small, it should be corrected for and the correction included in the systematic

uncertainty budget. In order to correct for the polarized background, we follow the

prescription developed by [120, 70], with some minor changes. The general form of

the correction can be written as:

Acorr‖ = C1

(
A‖ − C2Ap

)
, (36)

where Acorr‖ is the final, sought-after asymmetry due to only the polarized species

of interest. A‖ represents the measured asymmetry after the dilution factor and

the beam × target polarization corrections have been divided out. (At this point,

radiative corrections have not yet been applied to A‖). The multiplicative factor

C1 corrects for both reductions (due to isotopic impurities) and enhancements of

the measured asymmetry (due to additional polarized nucleons of the same species,

e.g., quasi-deuterons inside 14N in the case of deuterium targets), proportional to

the asymmetry of the intended target . The additive constant C2Ap corrects for the

asymmetry introduced by free and bound nucleons of a different species (e.g., protons

bound in 15N and free protons in an 15ND3 target).

Corrections on the deuteron target

For a deuterated ammonia target, the first correction factor in Eq. (36) usually is

written as follows:

Cd
1 =

1

1− ηp +Dn/(1− 1.5wD)
≈ 1.03± 0.01. (37)

The main correction comes from the fraction of events that come from free pro-

tons in the target instead of deuterons (due to isotopic impurities and frozen water

contamination):

ηp =
number of protons

number of protons + number of deuterons
≈ 0.015...0.035 (38)

Here, the lower estimate is the standard assumption made for similar targets in past

experiments [120] (assuming, e.g., that approximately 4.5% of the ND3 molecules

are actually ND2H1) while the maximum value comes from the best estimate in

CLAS Note 2012 - 004 [119] based on the actual EG1b data. (The value quoted
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in Ref. [119] is 5% contamination; however, the kinematic cuts applied there lead

to an enhancement of the proton cross section over the deuteron one by a factor

of about 1.4 which has to be removed to get the pure relative number density ηp).

It is important to note that this form of Eq. 37 is valid for the case where the

dilution factor is calculated based on cross section models and the assumption that

the target is pure ND3. In this case the denominator of the asymmetry, FD(n+ +n−),

simply overestimates the counts coming from the sought-after target, deuterium, by

a constant factor. On the other hand, if the asymmetry is calculated directly by

subtraction of an “empirical background” (i.e., some combination of measured rates

from Carbon and empty targets that mimic the non-hydrogen parts of the ammonia

target) from the total ammonia counts n+ + n−, one needs to correct only for the

actual number of excess counts from free protons. This means that ηp in Eq. 37 must

be multiplied by the ratio σp
σd

of free proton cross section over total deuteron cross

section for the corresponding kinematics, yielding the alternative form of Cd
1 :

Cd
1 =

1 + ηp
σp
σd

1 +Dn/(1− 1.5wD)
. (39)

The term Dn/(1− 1.5wD) in either form of Cd
1 corrects for the contribution from

“bound deuterons” inside 14N (itself only a small contamination in the 15N used for

the EG1 targets). The term wD corrects for the D-state contribution to the deuteron.

The remaining terms are defined as:

Dn = ηN
P14N

Pd

gEMC

3

Pd in 14N

P14N

≈ −0.0006...− 0.0010 (40)

ηN =
number of 14N

number of 14N + number of 15N
≈ 0.02. (41)

The factor gEMC is the correction for the EMC effect in nitrogen,

g
15N
EMC ≈ g

14N
EMC ≡ gEMC ≈ 1, (42)

which is just a crude approximation but its uncertainty is included in the overall

uncertainty of Dn. The factor
P14N

Pd
is estimated via the equal spin temperature

hypothesis to be between 0.4 and 0.5 (due to the relative magnitude of the magnetic

moments of 14N, µ14N = 0.404µN , and deuterium, µd = 0.86µN ). However, an

experimental study at SLAC (E143 experiment, unpublished) yielded a much lower

value of
P14N

Pd
≈ 0.33. Therefore, a conservative assumption is to use a value 0.40±0.08

for this ratio. The effective spin polarization of an isoscalar np pair inside 14N
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has been estimated (based on the Clebsch-Gordan coefficients of two independent

nucleons in p1/2 shells) as
Pd in 14N

P14N
≈ −1/3 [120], yielding the upper limit for Dn.

Under the näıve assumption that both the magnetic moment and the total angular

momentum J = 1 of 14N is due (only) to the net orbital angular momentum L and

spin S of pn pairs in 14N, this factor is estimated to be
Pd in 14N

P14N
≈ −0.25. Combining

the uncertainty ranges for both parameters yields the stated limits for Dn. While

the individual terms have relatively large uncertainties, for the case of an 15ND3

target this correction is tiny in comparison to ηp and can therefore be neglected. It

is describe here only for future reference (if 14ND3 or 14NH3 targets are used).

The second term in the correction accounts both for bound protons in 15N and

free polarized protons due to isotopic impurities in the ammonia:

Cd
2Ap =

(
ηpfpol

Pp
Pd

σp
σd

+ (1− ηN)
P15N

Pd

gEMC

3

Pp in 15N

P15N

σboundp

σd

)
Ap (43)

where Ap is the proton asymmetry, A‖(Q
2,W ), with all corrections applied, except

for the radiative correction. Here, the proton polarization (relative to that of the

deuteron) is

Pp =

0.191 + 0.683Pd for Pd > 0.16

1.875Pd for Pd ≤ 0.16

based on empirical studies [120]; for typical target polarizations Pd ≈ 0.25...0.35,

this yields Pp/Pd ≈ 1.2...1.5. This correction applies only to free protons bound

in ammonia molecules. The study in CLAS Note 2012 - 004 [119] showed that

only a fraction fpol, at most 1/2 of the most likely contamination ηp = 0.035, is

polarized according to this equation; therefore, a safe range of values for the first

term is ηpfpol
Pp

Pd
≈ 0.018...0.028. The factor

P15N

Pd
is again estimated, via the equal

spin temperature hypothesis, to be in the range −0.4... − 0.5. However, due to the

wave function of 15N, the unpaired proton in this nucleus has a negative polarization

compared to the nucleus as a whole,
Pp in 15N

P15N
≈ −0.2...− 0.33, where the first number

uses again the naive assumption that nucleon spin and angular momentum account

for both the magnetic moment µ15N = −0.26µN and the total angular momentum

J = 1/2 of 15N, while the upper estimate uses a simple shell-model ansatz (namely,

the Clebsch-Gordan coefficients for a p1/2 state). Therefore, the second term in this

correction is positive and is of order 0.026...0.055
σbound
p

σd
.
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Finally, to calculate Cd
2 (and, in the second version, Cd

1 ) one needs the ratios

of free, σp
σd

, and bound,
σbound
p

σd
, proton over deuteron cross sections (note that the

deuteron cross section is not to be taken “per nucleon” in our convention). These

ratios not only depend on kinematics, but also crucially on the reaction under dis-

cussion. For inelastic, inclusive scattering (i.e., the main goal of this analysis note),

one can assume σp
σd
≈ σbound

p

σd
≈ 0.5...0.75. In this case, combining all factors yields the

recommended range for Cd
2 ≈ (0.039± 0.012)Ap.

On the other hand, when extracting PbPt from exclusive D(e, e′p)n data, these

cross section ratios depend strongly on the cuts chosen. In particular, within our

exclusive kinematic cuts,
σbound
p

σd
≈ 0.2 since the bound proton in 15N has a much

broader momentum distribution than the one in deuterium, most of which falls out-

side our cuts. (The value 0.2 quoted comes directly from the ratio of background

over signal for this channel within our cuts; for an alternative approach see below).

In contrast, the ratio σp
σd
> 1 in this case, since only the protons inside deuterium

contribute to σd and our cuts are even more efficient for free protons than for those

inside deuterium. Using a realistic momentum distribution for p inside d, we assume

that this ratio can be as much as 2. Therefore, in this case the recommended range

is Cd
2 ≈ 0.044...0.073Ap. A second change is that for this case, all asymmetries in

question can be assumed to be proton asymmetries: AD = Ap. This yields a new

equation for the relationship Eq. 36:

A‖ =
(
Atrue‖ + C2Ap

)
/C1 =

1 + C2

C1

Ap (44)

This means that one should multiply the measured asymmetry A‖ with the factor

C1

1 + C2

≈
1 + ηp

σp
σd

1 + ηpfpol
Pp

Pd

σp
σd

+ (1− ηN)
P15N

Pd

gEMC

3

Pp in 15N

P15N

σbound
p

σd

≈ 0.98− 1.03 (45)

before using it to extract PbPt. Here, we ignore the (tiny) contribution from 14N and

assume that the background was subtracted using scaled Carbon (and potentially

empty) target data, which means Cd
1 is taken from Eq. 39.

An alternative approach to estimate the ratio
σbound
p

σd
makes use of the fact that

about 62% of the total background for the channel D(e, e′p)n comes from the seven

bound protons in 15N (based on the various amounts of different target materials), so

σboundp ∝ 0.62nB/7. Correspondingly. σd ∝ (n+ + n− − nB)/3 (since there are three



39

deuterons in ammonia), so that we can write

σboundp

σd
≈ 3

7

0.62nB
n+ + n− − nB

. (46)

The asymmetry used to extract PbPt can therefore be recast as

Aqe = AtheorPbPt =
n+ − n−

n+ + n− − nB
×

1 + ηp
σp
σd

1 + ηpfpol
Pp

Pd

σp
σd

+ (1− ηN)
P15N

Pd

gEMC

3

Pp in 15N

P15N
0.266 nB

n++n−−nB

=
n+ − n−

1+ηpfpol(Pp/Pd)(σp/σd)

1+ηp(σp/σd)
(n+ + n− − nB) + 0.0886nB

(1−ηN )(P15N/Pd)(Pp in 15N/P15N )

1+ηp(σp/σd)

=
n+ − n−

a(n+ + n−)− bnB
(47)

with

a =
1 + ηpfpol(Pp/Pd)(σp/σd)

1 + ηp(σp/σd)
(48)

and

b =
1 + ηpfpol(Pp/Pd)(σp/σd)− 0.0886(1− ηN)(P15N/Pd)(Pp in 15N/P15N)

1 + ηp(σp/σd)
(49)

For the extraction of PbPt from the exclusive quasi-elastic asymmetry as described

in the previous section, we find that a = 0.99± 0.02 and b = 0.98± 0.02.

The net effect of these corrections, when applied to both the inelastic data and

the calculation of PbPt,is a few percent of the extracted asymmetry. The uncertain-

ties in the values of the correction factors, Cd
1 and Cd

2 , are considered as part of our

systematic error calculations. For the proton asymmetries we used our model which

has been fine-tuned to agree with the proton data at a very good level and doesn’t in-

troduce any further statistical uncertainty. However, the systematic uncertainty due

to this proton model is fully included in our budget. Whenever a systematic varia-

tion of the final physics results due to models is studied, we vary the proton model

consistently at all points where it entes the calculation - from radiative corrections

over the proton contributions to deuteron observables, and also in the correction de-

scribed in this section. This accounts for all correlations between errors due to these

model uncertainties.
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I.6 RADIATIVE CORRECTIONS

Our goal is to extract asymmetries for a single photon exchange process, known as

Born scattering. However, there are higher order QED processes contributing to

the measured asymmetries. These contributions are corrected for by the radiative

corrections (see the EG1b proton analysis note for details). The corrections can be

separated into two categories: internal and external radiative corrections.

The internal radiative corrections account for higher order QED processes that

may occur during the interaction. These include internal Bremsstrahlung, where

the incoming or the scattered electron emits a photon; vertex correction, in which

a photon exchange occurs between the incoming and the scattered electron; and

vacuum polarization of the virtual exchange photon. The corrections for the internal

radiative effects have been calculated following Kuchto and Shumeiko [121].

The external radiative corrections (calculated using the prescription by Mo and

Tsai [122]) account for the energy loss of the electron while passing through the

detector and target material, mainly by the Bremsstrahlung process. As an electron

traverses the target it can radiate a real photon, which changes the energy of the

scattering process. Corrections for this effect depend crucially on the details of the

experimental conditions. Therefore, a slightly different target model than that for

the proton, taking all materials and their linear densities into account, was used in

calculating these external corrections (see Table 5).

For both internal and external bremsstrahlung, the resulting energy loss may

affect the reconstructed kinematics. The effect becomes especially important for

the so-called elastic tail because the elastic cross section grows rapidly as the beam

energy decreases, which increases the probability for radiation of a high energy photon

followed by elastic scattering. This creates a radiative elastic tail in the inelastic

region which is most pronounced at high W (low scattered electron energy E ′). We

applied a cut of E ′/E > 0.2 to all events to exclude the region with large corrections

from this effect.

For the radiative corrections in the EG1b experiment, an iterative, model de-

pendent program called RCSLACPOL was used. For detailed information on the

theoretical basis of this software, the reader is referred to [121][122][123]. The ra-

diative corrections to the measured asymmetries for the deuteron are calculated in a

completely analog way to those for the proton (see the EG1b proton analysis note).

Here we only give a brief summary and highlight any (minor) differences.
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The program creates a table of multiplicative and an additive correction term,

1/fRC and ARC . These correction terms were generated for each beam energy in our

standard (Q2,W ) bins. The correction is applied to the asymmetry A||, as the last

correction before the calculation of the virtual photon asymmetries,

ABorn|| =
Acorr‖
fRC

+ ARC . (50)

The additive term, ARC , corrects for the asymmetry of elastic, quasi-elastic (deu-

terium only) and inelastic radiative tails. The multiplicative term, 1/fRC , which

is always larger than 1, corrects for the “dilution” due to the (unpolarized) radia-

tive elastic and quasielastic (deuterium) tail underneath the inelastic region. Since

0 ≤ fRC ≤ 1, we can interpret the measured asymmetry consisting of a fraction fRC

of the true asymmetry and a fraction 1 − fRC of the contaminating asymmetry. In

practice, this multiplicative factor is used to properly propagate the statistical errors

from the raw asymmetry to the extracted Born asymmetry.

As in the case of the proton, we generated tables for fRC and ARC for each

kinematic bin using our models for polarized and unpolarized structure functions

and asymmetries of protons and neutrons in the elastic, quasi-elastic, resonance and

DIS region (see next Section). Separate tables for different model input as well as

variations of target parameters were generated for systematic studies. Apart from

systematic errors due to the target model, all model inputs were varied simultaneously

for the radiative corrections and for the other parts of the analysis, to properly

account for correlations in the corresponding systematic errors.

I.7 MODEL INPUT

Knowledge of the structure functions F1 and R as well as the virtual photon asym-

metry A2 is necessary to extract the physics quantities of interest, namely A1 and

g1, from the EG1b double spin asymmetry data. Moreover, the deep inelastic con-

tributions to the integral over g1 require knowledge of A1, A2 and F1 beyond the

measured kinematics for a full evaluation of the moments. Eqs. (90-95) provide a

brief summary of these calculations and the usage of these quantities. Finally, the

radiative corrections discussed above require models of all these quantities over the

full DIS and resonance region, including the regions unmeasured by the experiment.

Therefore, parameterizations based on the existing world data were used for these
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models. A package originally developed by the E143 collaboration [46] and main-

tained by S. Kuhn and N. Guler generates values of all physics quantities of interest

based on these world data parameterizations. The results of the present experiment

were used, in an iterative approach, to refine these models.

The models are under continuous development as new data become available on

the asymmetries and the structure functions. Especially the models on A1 and A2 in

the resonance region went through an extensive upgrade with the inclusion of many

experiments, including EG1b. Studies of the parameterizations of the virtual photon

asymmetries in the resonance region are provided in chapter III. The first part of

the present section describes the models of the unpolarized structure functions. In

the second part, we will give the current status of the virtual photon asymmetries in

the DIS region.

I.7.1 Models of the unpolarized structure functions for the deuteron

For the purposes outlined above, we needed models for the unpolarized structure

function F1 and the ratio R = σL/σT of longitudinal to transverse virtual photon

absorption cross-sections, for protons, neutrons and for the deuteron. We used the

parametrizations developed by P. Bosted and E. Christy for the proton [125] and the

neutron [124] for F1 and R in the inelastic region. Bosted and Christy [124] also use

the nucleon structure functions and form factors to model the deuteron inelastic and

quasi-elastic response. They kinematically smear the elastic and inelastic response

of the nucleons (to simulate the effect of Fermi motion) using a table of the Paris

wave function. An additional correction accounts for extra strength observed in the

“dip region” between the quasi-elastic peak and the Delta resonance in deuterium

beyond the quasi-free approximation (most likely due to meson exchange currents).

(The deuteron elastic response, needed for its radiative tail, was modeled using the

known deuteron form factors).

In the DIS region,we used the most recent parametrization of world data by the

HERMES collaboration [126]. Together with a fit of R (R1998 [127]), one can extract

F1. In all cases, the assumption Rp ≈ Rn ≈ Rd was made.

As a reference, plots for R and F1 models of the deuteron are shown for various

Q2 bins in Fig. 15.
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FIG. 15: The models for R (top) and F1 (bottom) for the deuteron are shown for
various Q2 bins.
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I.7.2 Models of A1 and A2 in the DIS region

The proton and neutron models for A1 in the DIS region were produced by pa-

rameterizing the world data. The Ap1 parametrization included data from EMC [7],

SMC [45], E143 [46], E155 [48], HERMES [49], EG1a [69] and EG1b [18]. The An1

parametrization included data from measurements on 3He targets (E142 [44], E154

[47], HERMES [49] and Hall-A [71]) as well as ND3 targets (E143 [46], E155 [48],

HERMES [49], SMC [45], COMPASS [50], EG1a [68] and EG1b [51]). We also used

real photon data from ELSA [128][129] and MAMI [130] for both parameterizations

to constrain the fit as Q2 → 0. The data on An1 were used as presented by the experi-

ments with the 3He target. In order to extract neutron data from ND3 measurements,

we used the simplified assumption:

Ad1 = (1− 1.5wD)

[
F p

1A
p
1 + F n

1 A
n
1

F p
1 + F n

1

]
(51)

and solved the equation for An1 using models for Ap1 and the unpolarized structure

functions F p,n
1 . In the end, the Ap1 fit utilized the following parametrization:

Ap1 = ξP1+P2 tan−1(P 2
3Q

2)[1 + (P4 + P5 tan−1(P 2
6Q

2)) sin(πξP7)], (52)

while the parametrization for An1 was

An1 = ξP1 [(P2 + P3 tan−1(P 2
4Q

2)) sin(πξP5)− cos(πξP6)], (53)

where Pi represents parameter i. We also allowed the overall scale of each experiment

to vary within the stated systematic error by employing additional parameters for

each experiment. The kinematic variable ξ in the parameterizations was defined by

ξ =
Q2 + (M +Mπ)2 −M2

M(ν +
√
ν2 +Q2)

, (54)

where M is the nucleon mass and Mπ is the mass of the π0 = 0.135 GeV/c2. The error

on the fit was calculated by using the error matrix Ej
k determined by the minimization

routine such that δA1 = ∂jE
j
k∂

k, where ∂i = ∂A1/∂Pi is the derivative of A1 with

respect to parameter Pi, and summation is implied over repeating indexes. Fig. 16

shows some results for both Ap1 and An1 fits. Afterwards, the deuteron model was

obtained by using Eq. (51), with the corresponding error calculated by

δAd1 =
1− 1.5wD
F p

1 + F n
1

[(F p
1 )2(δAp1)2 + (F n

1 )2(δAn1 )2]1/2. (55)
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FIG. 16: The A1 fits in the DIS region for the proton (top) and neutron (bottom).

A2 in the DIS region was calculated by using the the Wandzura-Wilczek [8] rela-

tion for gWW
2 , which yields

A2 = γ
gWW
T

F1

(56)

where F1 comes from our model and gWW
T was calculated by solving

gWW
T =

∫ 1

x

g1

y
dy (57)

iteratively in terms of our A1 and F1 models, without considering the higher twist

contributions. The higher twist contributions were taken into account for the sys-

tematic error on the model by including twist-3 calculations. After the calculations

of both Ap2 and An2 , the asymmetry Ad2 for the deuteron was determined as a weighted

sum of the two by using F1 as a weight factor (similar to Eq. (51)).

In order to ensure a smooth transition between the resonance and the DIS regions,

the parameterizations for A1 and A2 in the DIS region were constrained to “behave

regularly” when extrapolated into the resonance region. In particular, we used the
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constraint A1 = 1 for W = 1.07, the inelastic threshold. (This is expected in all

realistic QCD models for x→ 1, as well as from arguments based on parton-hadron

duality). The asymmetries in the resonance region were then modeled as a combina-

tion of this DIS extrapolation, resonant terms (from MAID) and earlier models and

fit to the data. Details are described in chapter III since the process uses our own

EG1b data in an iterative fashion.

I.8 COMBINING DATA FROM DIFFERENT CONFIGURATIONS

As in the proton analysis, we want to combine data taken with different beam,

target and detector configurations within the same kinematic (Q2,W ) bin to extract

results with the smallest errors possible. Different runs can differ in the following

parameters:

1. Beam energy

2. Torus polarity

3. Target material and polarization (including direction of polarization, along (+)

or opposite (−) to the beam direction)

4. λ/2-plate status (in = 1 or out = 0)

The procedure used follows closely that for the proton. Below we give a short

summary as reference for the reader.

I.8.1 Combining runs

Events from all runs belonging to the same beam energy, torus current (including

sign) and target polarization (including sign) were added together to calculate the

first set of raw asymmetries, Araw(W,Q2), for each kinematic bin. This includes

summing over runs with opposite status of the “half-wavelength” (λ/2) plate. Such

a set of runs is called a group, “G”. The advantage of summing over a relatively

large set of runs is that the asymmetries for each bin will be distributed more like

a Gaussian around the “true” values, with errors that are not excessively large in

general. This makes combining such asymmetries more straightforward and less

error-prone. Events from matching helicity pairs are summed in two counters, N0

and N1, which are the total inclusive counts for the two relative spin orientations

(including the effect of the λ/2 plate):
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1. N0 is incremented if beam and target spin are antiparallel

2. N1 is incremented if they are parallel.

Similarly, for each run the counters FC0 and FC1 are increased according to the life-

time gated Faraday Cup scaler sums for the two relative orientations, again taking

the status of the λ/2 plate into account. After summing over all runs within a group,

the asymmetry in a given bin is then calculated as:

AGraw(W,Q2) =
N0 − (FC0/FC1)N1

N0 + (FC0/FC1)N1

. (58)

The error on the asymmetry is, to a very good approximation, given by

σAG
raw

(W,Q2) =

√
1

N0 +N1

. (59)

At the same time, for future reference, we also need to determine the averaged values

of several kinematic variables for each of the bins. Those variables are Q2, ν and

W = (M2 + 2Mν −Q2)1/2 (60)

E ′ = E − (W 2 −M2 +Q2)/2M (61)

x = Q2/2Mν (62)

γ =
√
Q2/ν (63)

θ = tan−1
(√

p2
x + p2

y/pz

)
(64)

ε =
2EE ′ −Q2/2

E2 + E ′2 +Q2/2
(65)

η =
ε
√
Q2/E

1− εE ′/E
. (66)

The averages of these kinematic variables for a given bin in Q2 and W are calculated

by simply calculating the quantity in question for each event in the bin, summing

over all events within a group, and then dividing by the number of events in the bin

for the group.
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TABLE 17: t-Test results for combining sets with opposite target polarizations.

Target Ebeam(GeV)(Torus) tave σtave χ2 Nbin

ND3 1606i -0.0166 0.0243 1.002 1685
ND3 1723o 0.0142 0.0213 1.022 2199
ND3 2561i 0.0101 0.0211 1.018 2242
ND3 2561o -0.0046 0.0184 0.986 2955
ND3 4238i 0.0031 0.0189 0.994 2791
ND3 4238o 0.0223 0.0158 1.000 3976
ND3 5615i 0.0128 0.0183 1.002 2986
ND3 5725i -0.0018 0.0185 1.030 2925
ND3 5725o 0.0117 0.0157 0.996 4033
ND3 5743o 0.0283 0.0158 1.004 3993

I.8.2 t-Test

Before combining two different groups with opposite target polarizations, we first

want to ascertain whether their individual results are statistically compatible with

each other. This allows us to discover previously unknown problems with particular

groups (e.g., vastly different dilution factors), as well as showing us at what level

single spin asymmetries might be present. We use a t-test for this purpose. For each

kinematic bin, we define

t(W,Q2) =
AG1
raw/P

G1
rel − AG2

raw/P
G2
rel√

σ2
AG1

raw
/(PG1

rel )
2 + σ2

AG2
raw
/(PG2

rel )
2
. (67)

with the relative polarization PG
rel as defined in section I.4.4. If the fluctuations

between group 1 and group 2 are purely statistical, we expect that the distribution

of t for the different bins is Gaussian with a mean of zero and a standard deviation

(which is similar to χ2 ) of 1. The mean t should be zero within the error on the

mean, which is simply 1/
√
Nbins. Large deviations from these expectations suggest

that additional scrutiny of the two groups in question is warranted. Fig. 17 shows

sample plots from the t-tests for 2.5 and 5.7 GeV data sets and Table 17 lists all

obtained t values. As can be seen, the systematic difference between any two data

sets with opposite polarization is at most 3% of the point-to-point statistical error,

and within two standard deviations (or less) of the expected value of zero. The values

for χ2 are also all reasonable.
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FIG. 17: Plots showing the distribution of t(W,Q2), in Eq. (67), for the t-Test
between data sets with opposite target polarizations.

I.8.3 Combining opposite target polarizations

We combine the two groups with opposite target polarizations bin by bin, weighting

each asymmetry with its statistical weight, (PG
rel)

2/σ2
AG

raw
. The statistical error of the

resulting combined asymmetry is

σAC
raw

=

√
(PG1

rel )
2 + (PG2

rel )
2

(PG1
rel )

2/σ2
AG1

raw
+ (PG2

rel )
2/σ2

AG
raw

. (68)

The average kinematic variables introduced earlier were also combined for each

bin with the same statistical weights. The result for the 2 groups with opposite target

polarizations combined is referred to as a “set” in the following. The only difference

between the sets is their beam energy and torus currents.

Before continuing any further in combining runs, at this stage we converted the

raw asymmetries by dividing out PbPt and FD for each set. In addition, the correc-

tions for pion and pair-symmetric contaminations as well as the polarized background

and the radiative corrections were all applied at this stage. Finally, the resulting val-

ues for ABorn|| (W,Q2) were converted to values for A1 + ηA2(W,Q2) by dividing with

the averaged D results (obtained from models) for each bin. All of these manipu-

lations in principle depend on the beam energy and in case of contaminations, also

on the torus polarity. The values for A1 + ηA2, for each bin, as well as the averaged

kinematic variables and the count rates are propagated into the next step.



50

I.8.4 Combining data with slightly different beam energies

At this stage we have 11 data sets. These sets are given in Table 2. Among these,

there are sets with slightly different beam energies but the same torus current. These

sets are:

• 1.606 GeV, −1500A ; 1.723 GeV, −1500A

• 5.615 GeV, +2250A ; 5.725 GeV, +2250A

• 5.725 GeV, −2250A ; 5.743 GeV, −2250A

The values for A1 + ηA2 ≡ A12 are combined for these sets by taking their error

weighted average for each kinematic bin,

Amean12 (W,Q2) =
AS1

12 /σ
2
AS1

12
+ AS2

12 /σ
2
AS2

12

1/σ2
AS1

12
+ 1/σ2

AS2
12

, (69)

σAmean
12

(W,Q2) =

(
1

1/σ2
AS1

12
+ 1/σ2

AS2
12

)1/2

. (70)

The kinematic factor η does depend on the beam energy, however, it is relatively

small for our kinematic region and varies only slightly for closely neighboring beam

energies, which makes the combination of A1+ηA2 for slightly different beam energies

possible. Moreover, we applied a t-test in order to make sure that these data sets

are compatible with each other for combining. The form of the t-test for this case is

t(W,Q2) =
AS1

12 − AS2
12√

σ2
AS1

12
+ σ2

AS2
12

(71)

for each of the overlapping kinematic bins. The average t-score,

tave =

∑
W,Q2

t(W,Q2)

N
σtave =

√
1

N
(72)

and the χ2 values

χ2 ≈ σ2
t =


∑
W,Q2

t2(W,Q2)

N


1/2

(73)

are monitored for each combination. Table 18 provides the overall result of this test.
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TABLE 18: t-Test results for combining data with slightly different beam energies.

Target Ebeam(GeV) tave σtave χ2 Nbin

ND3 1.606 - 1.723 0.0055 0.0231 0.99 1882
ND3 5.615 - 5.725 -0.0289 0.0201 1.01 2465
ND3 5.725 - 5.743 0.0917 0.0169 0.99 3497

As one can see, there is only one case where the t-value is unexpectedly large

(nearly 10% or about 5 sigma), for the pair 5.725 GeV - 5.743 GeV. It should be

noted that these two energy settings correspond to 1-month long run periods each,

with potentially significant changes in running conditions. In any case, the system-

atic difference expressed by t should be compared to the known magnitude of the

systematic error on these data sets as fraction of the statistical error, see Table 44

in Appendix C.2. This table shows that the systematic error due to the polarization

product PbPt alone (which is different for the two run periods) is about 20% of the

statistical error in each W bin over most of Q2. If the actual difference due to PbPt

between the two run sets is just 1/2 of this estimated systematic error, it would result

in the value of tave observed in Table 18.

We also propagated the kinematic variables and the count rates to the next step.

The kinematic variables are averaged between the two data sets by using the total

counts for each set as a weighting factor, e.g.,

〈Q2〉 =
Q2
S1NS1 +Q2

S2NS2

NS1 +NS2

. (74)

I.8.5 Combining data sets with opposite torus polarities

Opposite torus polarities for the same beam energy do not have any effect on the

values of A1 + ηA2. Therefore they can safely be combined in a straightforward way,

taking error weighted averages. Therefore, we followed exactly the same prescription

outlined in the previous section, using Eqs. (69) and (70). Again, we performed a t-

test for each pair of data sets combined. Table 19 provides the results. The obtained

t values are again in the few-% range and mostly within 2 sigma of the expected

0. They are also completely compatible with possible systematic differences between

the data sets with opposite torus polarity, within the systematic errors.

At this point, before combining data sets with different beam energies, we need
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TABLE 19: t-Test results for combining sets of opposite torus polarity.

Target Ebeam(GeV)(Torus) tave σtave χ2 Nbin

ND3 1.6(+) - 1.6(−) -0.0561 0.0283 0.99 1252
ND3 2.5(+) - 2.5(−) -0.0272 0.0252 0.98 1572
ND3 4.2(+) - 4.2(−) -0.0443 0.0219 1.01 2082
ND3 5.7(+) - 5.7(−) -0.0439 0.0197 1.00 2589

to extract A1 and g1 by using models for A2 and F1,

A1(W,Q2) = [A1 + ηA2](W,Q2)− 〈η〉Amodel2 (W,Q2) (75)

g1(W,Q2) =
Fmodel

1 (W,Q2)

1 + 〈Q2〉/〈ν〉2

[
A1(W,Q2) +

√
〈Q2〉
〈ν〉

Amodel2 (W,Q2)

]
. (76)

These values, again, together with the kinematic variables, averaged according to Eq.

(74), and the count rates for each bin are propagated to the next level of analysis.

I.8.6 Combining data sets with different beam energies

At this point we have 4 independent data sets, which we can label E1, E2, E4 and

E5, corresponding to 1.x, 2.x, 4.x and 5.x GeV data sets. In each set, we have

A1, g1, kinematic variables and the count rates for each bin. The A1 and the g1

values from different sets can be combined by taking their error weighted averages.

The kinematic variables are, again, combined by weighting them with corresponding

count rates in each bin. In this way, the data sets were combined, two at a time: first

combining E1 and E2, then combining E(1:2) with E4 and finally combining E(1:2:4)

with E5. We performed a t-test between each individual data set, as well as between

the combined and the individual data sets. The results are given in Table 20. Similar

comments apply as before - no t values exceed 6.2% which is smaller than the known

systematic errors (as fraction of the statistical ones) of all data sets involved.

As a result, all data are combined into a single set, consisting of A1 and g1 values,

as well as the properly averaged kinematic variables and the count rates, for W

and Q2 bins. In the next section, we will summarize the corrections applied on

the asymmetries and describe how we propagated the statistical errors after each

correction. Then we will outline the systematic errors and the final results for these

quantities. All quantities of interest are presented in chapter II.



53

TABLE 20: t-Test results for combining data sets for g1 with different beam energies.

Target Beam Sets tave σtave χ2 Nbin

ND3 E1-E2 0.0623 0.0265 0.98 1421
ND3 E2-E4 -0.0487 0.0274 1.03 1330
ND3 E4-E5 0.0565 0.0217 0.99 2118
ND3 E2-E5 0.0482 0.0373 1.00 719
ND3 E1-E4 -0.0271 0.0389 1.02 658

ND3 E(1:2)-E4 -0.0358 0.0274 1.02 1330

ND3 E(1:2:4)-E5 0.0527 0.0217 0.97 2118

I.8.7 Combining W bins for plotting

Our final results are created as a function of Q2 and W . Section I.2 explains the

kinematic values of our standard Q2 and W bins. On the other hand, while demon-

strating the results for various quantities, it is generally better to combine a few

W bins and plot the average result in a larger kinematic range for better visibility.

Therefore, we combined data in standard W bins within a ∆W = 40 MeV range

and plot the average results. For this purpose, the data from standard W bins were

combined by taking their error weighted average:

x̄ =

∑
i

xi/σ
2
i∑

i

1/σ2
i

(77)

σ2
x̄ =

1∑
i

1/σ2
i

(78)

where summation is performed within ∆W = 40 MeV range. It should be pointed

out that this kind of combination was only made for the data and its statistical error.

We utilized a different method for the systematic errors, which will be explained in

section I.10.

I.9 PHYSICS QUANTITIES AND PROPAGATION OF

THE STATISTICAL ERRORS

The raw asymmetry is calculated from the count rates:

Araw(Q2,W ) =
N+ −RFCN

−

N+ +RFCN−
(79)
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where N+ and N− are total inclusive counts, for each bin, corresponding to the

positive and negative helicity configurations, respectively. The quantity RFC is the

normalization factor,

RFC =
FC+

FC−
(80)

which is the ratio of accumulated Faraday cup charges for these helicity configura-

tions. The statistical error on the raw asymmetry is given by

∆Araw =
2RFCN

+N−

N+ +RFCN−

√
1

N+
+

1

N−
(81)

Later, pion and pair symmetric contaminations are determined. Since the pion

contamination is small, it is only treated as a systematic error in the final results.

The pair symmetric correction is applied to the raw asymmetry,

Acorr = ArawCback = Araw
1−RApos/Araw

1−R
=
Araw −RApos

1−R
(82)

where R is the e+/e− ratio and Apos is the positron raw asymmetry. The error on

this quantity propagates as

∆Acorr =

√
(∆Araw)2 +R2(∆Apos)2

(1−R)2
(83)

The next step in the analysis is to determine the dilution factor, FD, and the beam

× target polarization, PbPt. The asymmetry corrected for these effects is

Araw‖ =
Acorr
FDPbPt

. (84)

Although extraction of these quantities have their own statistical and systematic

uncertainties, they are treated as part of our systematic error calculations. Thus,

their uncertainties do not enter into the statistical error of the final results. The

error on the Araw‖ is written as

∆Araw‖ =
∆Acorr
FDPbPt

. (85)

Then we apply the polarized background corrections,

Acorr‖ = C1

(
Araw‖ − C2Ap

)
(86)

(see Section I.5). The uncertainty on C2Ap is treated as a systematic error, and

therefore

∆Acorr‖ = C1∆Araw‖ (87)
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with the factors C1 and C2 described in section I.5. Finally, radiative corrections are

applied in the following form,

ABorn‖ =
Acorr‖
fRC

+ ARC , (88)

and the statistical error becomes:

∆ABorn‖ =
∆Acorr‖
fRC

. (89)

After all corrections described in the preceding sections, the final form of the corrected

asymmetry, A‖ ≡ ABorn‖ , can be written as:

A‖ =
C1

fRC

(
Araw
FDPbPt

Cback − C2

)
+ ARC . (90)

In the next stage, we can calculate the virtual photon asymmetry A1:

A1 =
A‖
D
− ηA2, (91)

where D is the depolarization factor described earlier. The statistical error on the

virtual photon asymmetry is calculated as:

∆A1 =
∆A‖
D

. (92)

The spin structure function g1 is given by

g1 =
F1

1 + γ2

[
A‖
D

+ (γ − η)A2

]
. (93)

The statistical error associated with the g1 is

∆g1 =
F1

1 + γ2

[
∆A‖
D

]
. (94)

Finally, we can calculate the moments of the spin structure function. The nth moment

is written as,

Γn1 (Q2) =

∫ 1

0

g1(x,Q2)xn−1dx. (95)

The integral can be divided into small ∆x ranges and expressed as a summation

Γn1 (Q2) =
N∑
i=0

∫ xi+1

xi

g1(x,Q2)xn−1dx. (96)
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Then the individual bin integrals can be evaluated by parts∫ xi+1

xi

g1(x,Q2)xn−1dx = g1(x,Q2)

[
xni+1 − xni

n

]
− xn

n
d(g1(x,Q2)). (97)

Since our bin sizes are small and we have a single g1 value per bin, hence g1 is constant

within the infinitesimal range of the integration, d(g1(x,Q2)) = 0. Therefore, the

second term in the right hand side vanishes, leaving us with

Γn1 (Q2) =
N∑
i=0

xni+1 − xni
n

g1(x,Q2). (98)

The small bin sizes we have validates this as a good approximation to a continuous

integration. However, our data is in (W,Q2) bins, so we need to determine the

corresponding x for each bin. We used experimentally determined kinematic averages

for xav in each (W,Q2) bin and calculated the nth moment of g1 as:

Γn1 (Q2) =
∑
W

xnhigh − xnlow
n

g1(W,Q2), (99)

with

xhigh = (xav[W ] + xav[W−1])/2 (100)

xlow = (xav[W ] + xav[W+1])/2 (101)

for a constant Q2. The statistical error on this quantity is given by

∆Γn1 (Q2) =

(∑
W

[
xnhigh − xnlow

n

]2

× [∆g1(W,Q2)]2

)1/2

. (102)

where ∆g1(W,Q2) is the statistical error on g1(W,Q2).

The final results on all of these quantities are presented in chapter II. In the

following sections, we will describe how we handled systematic errors.

I.10 SYSTEMATIC ERROR CALCULATIONS

All applied corrections to the asymmetries and the structure functions as well as the

model inputs required to calculate the final results are summarized in Eqs. (90-94).

However, each of the correction factors as well as the model inputs for the A2, F1

and D 1 have their uncertainties.

1The depolarization factor D internally depends on the structure function R.
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We chose to estimate the effect of these uncertainties on a given measured quan-

tity by evaluating that quantity with the standard value of all corrections and model

input and then repeat the evaluation with a model input or a parameter varied

within uncertainties. The difference between these two results can be considered as

the systematic error, due to that specific factor, on the quantity of interest. There-

fore, the first step in the systematic error calculation is to determine the range of

uncertainty for each factor that enters into the calculations. The analysis is first

performed by using the standard values, which we can call standard measurement.

Then it is repeated again by changing only one of the factors by the amount of its

uncertainty while keeping all other quantities at their standard values. Consequently,

the full analysis is repeated for each uncertain factor and several different systematic

variations are obtained for each measured quantity. For example, if A
(s)
1 (W,Q2) is

the standard value for a given (W,Q2) bin and A
(i)
1 (W,Q2) is the value obtained by

changing a factor i by its uncertainty, the systematic error on A1(W,Q2) due to the

uncertainty of i is calculated by

δA
(i)
1 (W,Q2) = |A(s)

1 (W,Q2)− A(i)
1 (W,Q2)| (103)

The total systematic error δA
(tot)
1 (W,Q2), is then calculated by adding all the sys-

tematic uncertainties in quadrature:

δA
(tot)
1 (W,Q2) =

(∑
i

[δA
(i)
1 (W,Q2)]2

)1/2

(104)

The main factors that enter into the systematic error calculations are:

1. Pion and pair symmetric background

2. Dilution factor

3. Beam × target polarization

4. Polarized background

5. Radiative correction

6. Errors on model asymmetries and structure functions

However, it should be noted that, for each item on this list, there may be several

sub-parameters varied during the analysis. Overall there are 27 parameters as listed
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in Table 21. In order to make this procedure quick and automatic, an error index

array was used in the analysis program. Each subprocess in the program looks for the

status of the index in the array corresponding to its specific correction and decides

whether the correction should be applied at the standard value or the boundary

value of the parameter. Each index in the array is turned on or off, “on” meaning

the systematic change should be applied to that parameter. Then, the whole analysis

code is put into a loop over all values of the index array. For each repetition, one

element of the index array is turned on to create the systematic results of the analysis.

Table 21 lists the elements of the error index array and describes the corresponding

variations. In addition, Appendix section C.2 provides detailed tables of systematic

errors for individual Q2 bins as a percentage of the statistical errors. This quantity is

calculated as the quadratic mean of the ratio of the systematic error to the statistical

error,

σpercentsys (Q2) =

√√√√ 1

N

∑
W

σ2
sys(Q

2,W )

σ2
stat(Q

2,W )
× 100 (105)

where N is the number of W bins entering into the summation. Tables 41-44 summa-

rize the systematic errors on A1 + ηA2 for each data set with different beam energy

settings and provides the individual contributions from different sources. Also, Table

45 gives the total systematic errors on A1, together with the different sources, and

Table 46 provides the systematic errors evaluated in different W regions.

The following sections describe the different systematic variations in more detail.

Before continuing to the individual systematic error definitions, it should also be

noted that the systematic errors were evaluated independently for standard W bins

of 10 MeV and the combined W bins of 40 MeV. While the data and the statistical

errors from standard bins were combined within W = 40 MeV range as explained in

section I.8.7, the systematic errors cannot be combined in that fashion. Therefore,

the full analysis was performed for the combined bins the same way it was done

for the standard bin size by running over all systematic variations and adding the

systematic differences in quadrature for the combined data. Similarly, for any other

quantity of interest we calculated from the data, we used the same approach: going

through the full chain of analysis for this quantity, for each variation of a parameter,

and again adding the variations of the final result in quadrature. This applies to

quantities like g1d as well as moments thereof, and also to the extracted values for

g1n.
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TABLE 21: Systematic error index and corresponding variations to each index ele-
ment.

Error Index Variation

0 Standard analysis
1 Pion background correction
2 Pair symmetric correction varied
3 Dilution factor varied
4 Radiative corrections varied

5 - 16 PbPt varied for each beam energy
17 - 22 Model inputs
23 - 25 Place holder for further model inputs
26 - 28 Polarized background corrections

I.10.1 Pion and pair-symmetric backgrounds

Most of the pion background was removed by precise identification of electrons includ-

ing the geometrry and timing cuts (“Osipenko cuts”, see [1]) on the CC. Studies on

the remaining pion background revealed a very small amount of pion contamination

in the electron sample. Since it is very small, the total amount of this contamination

was treated as a systematic error. The effect of the remaining pion contamination

on the raw asymmetry can be quantified as

Acorr =
Araw −RπA

π

1−Rπ

(106)

where Rπ = π−/e− ratio and Aπ ≈ 0 is the pion asymmetry. The difference between

the corrected value and the uncorrected value was used to estimate the systematic

error due to the remaining pion contamination. (This is equivalent to assuming an

uncertainty of δAπ = ±Ae).
In order to determine the systematic uncertainty in the pair-symmetric contam-

ination, the average contamination over all θ and momentum bins, weighted by the

errors on the fit parameters, were compared for opposing torus polarities for the same

beam energy. Half of that difference was added to the e+/e− ratio and the asymme-

try was corrected by using the new value. In case there were not data for both torus

polarities for a particular beam energy, such as the 1.7 and 5.6 GeV data sets, the

comparison was made with the closest beam energy. The total systematic error due

to the pion and pair symmetric backgrounds is less than 1% of the asymmetry.
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I.10.2 Dilution factor

The dilution factor analysis was performed by R. Fersch, who precisely determined

the overall systematic uncertainty on this quantity. The main source of error in

determining the dilution factor was the target model parameters, namely, the un-

certainties in the physical measurements of the various materials in the target: the

lengths and the densities of the carbon, Kapton and aluminum as well as the frozen

ammonia target. In order to estimate the systematic error on the dilution factors,

these parameters were changed by a reasonable amount [1].

The dilution factor was obtained by two independent methods, first one relying

on data and the second one relying on a model, as described in section I.3. This

model used a world data parametrization of unpolarized cross sections. Eventually,

the results obtained by using the model were used for the final analysis. However, the

systematic errors from the model were not determined. Therefore, in addition to the

systematic uncertainties on the target parameters, model uncertainties should also

be considered in the systematic error calculation. This was done by comparing the

dilution factors obtained from the two different methods. However, the results from

the first method had bin to bin statistical fluctuations, so a direct comparison would

result in an error dominated by these statistical fluctuations, which are not char-

acteristic for systematic error. Also, that approach would not be possible for some

kinematic regions, where we had poor data but the model dependent dilution factors

were determined by extrapolation. Therefore, a fit to the dilution factors obtained

from the data was generated and a comparison between this fit and the model-based

dilution factors were used as part of the systematic error on this quantity. For more

detailed information, please refer to [1].

I.10.3 Beam and target polarizations

As described in section I.4, the product of beam and target polarization was extracted

using data. The main source of error on this quantity is of a statistical nature. The

full error also contains a systematic uncertainty coming from the factors a and b

described in Section I.5. Both factors are varied (by 0.02) within their uncertainties

and the polarization product is reevaluated. The resulting variations for either factor

are added in quadrature to the statistical error (which dominates).

The error on PbPt was not propagated as a statistical error. Instead ,it was added
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to the value of the polarization used for the standard analysis, for one data set at

a time, keeping others unchanged. The full analysis was repeated 12 times, each

corresponding to a change in the polarization of one data set. Then the differences

between the standard analysis and the systematic analysis were added in quadrature

to determine the total systematic error due to the uncertainties in the PbPt extraction.

The PbPt extraction was done by using the exclusive method for all data sets except

the 1.6 and 1.7 GeV ND3 sets with negative torus polarity. For these specific data

sets, the inclusive method of extraction was used with a 10% error on the value,

which is twice and three times larger than the statistical error obtained from the

inclusive method, respectively. For the inclusive method, dilution factors were used

but because of the overestimated statistical errors on these data sets, the correlation

in the systematic errors between the dilution factor and PbPt can be safely neglected.

I.10.4 Polarized background

The correction factors C1 and C2, described in section I.5, have uncertainties that are

not well defined. For the standard correction, the values C1 = 1.03 and C2 = 0.039Ap

were used, where Ap is the proton asymmetry. The systematic error was determined

using three variations:

1. C1 = 1.02 was used

2. C2 = 0.027 was used

3. the model for Ap was varied by its uncertainty. This happens “automatically”

when the models are varied (see below) - such variations are simultaneously

applied to all places where a given model enters.

As a result to the first 2 variations, this correction yields an average systematic error

of about 2% to 6% of the statistical error on A1 + ηA2.

I.10.5 Radiative corrections

Radiative corrections have uncertainties stemming from the target model used (for

external radiation) and from the models for structure functions used to calculate

radiative tails. The former uncertainty was evaluated by varying our target model

within reasonable parameters, while the latter was again “automatically” taken care

of by the variation of models described below. In particular, radiative correction
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tables were calculated for each variation of the models, and the corresponding tables

were applied whenever the models were varied. This follows exactly the procedure

for the proton analysis and is described in more detail in Ref. [1].

I.10.6 Systematic errors due to models

The models used for F2, R (and thus F1), as well as A1 and A2 in the DIS region,

are described in Section I.7. In all cases except for A2(DIS), the models were based

on multi-parameter fits with systematic uncertainties quantified by the parameter

uncertainties or by direct comparison with data. For all systematic effects due to

these model uncertainties, we varied each of the models for F2, R and A1(DIS) by

these fit uncertainties in turn. For A2(DIS), we used an alternative model with a

twist-3 part, gHTT added to the standard Wandzura-Wilczek form. Finally, for the

models of A1 and A2 for both the proton and the neutron in the resonance region (see

Section III), we used alternative versions derived from earlier fits of a more limited

data set.

In all cases, any change in one model was propagated to all steps in the analysis

where this particular model is used to properly evaluate the systematic correlations

of such changes.
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CHAPTER II

PHYSICS RESULTS

The results from the analysis are presented in this section by showing comprehensive

plots of the physics quantities extracted. The main goal of the analysis is to measure

the double spin asymmetry A‖ with all corrections given in Eq. (90) and extract

A1 + ηA2, A1, g1 and Γ1 for the deuteron. It should be noted that the quantities in

the following figures are averaged over the final state invariant mass W in 40 MeV

bins. The systematic errors for the averaged results were obtained with the usual

procedure by independently running the whole analysis on each quantity for each

systematic uncertainty.
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FIG. 18: A1 + ηA2 versus final invariant mass W for 1.6 and 2.5 GeV beam energy
settings. The Q2 bin is given at the top of each plot. The red-solid and brown-
dotted curves are A1 + ηA2 and ηA2 parameterizations, respectively. The green
shade represents the total systematic error on A1 + ηA2.
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FIG. 19: A1 + ηA2 versus final invariant mass W for 4.2 and 5.7 GeV beam energy
settings. The Q2 bin is given at the top of each plot. The red-solid and brown-
dotted curves are A1 + ηA2 and ηA2 parameterizations, respectively. The green
shade represents the total systematic error on A1 + ηA2.

Figures 18 and 19 show the results for A1 + ηA2 for selected Q2 bins for various

beam energy settings. Fig. 20 explicitly provides the systematic errors on this

quantity from different contributing elements. Once A1 + ηA2 is calculated, we can

extract the virtual photon asymmetry A1, by using model inputs for A2. Fig. 21

shows this quantity together with different sources of systematic errors. In addition,

Figs. 22 and 23 show the final A1 versus final state invariant W mass for all Q2

bins in our kinematic coverage. At low Q2, the effect of the ∆P33(1232) resonance

is clearly visible which proves that the A3/2 transition is dominant in this region as

expected, causing the asymmetry to be negative. As we go to higher values of W ,

the transition A1/2 becomes dominant leading to resonances such as D13(1520) and

S11(1535).
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FIG. 20: A1 + ηA2 versus W together with different sources of systematic error.
The shade at the bottom (green) is the total systematic error. The other systematic
errors are offset to the following vertical scales, from top to bottom: pion and pair
symmetric contamination (-0.4); dilution factor (-0.6); radiative correction (-0.8);
PbPt (-1.0); models (-1.2); polarized background (-1.4). At this point, the biggest
source of our systematic error comes from the PbPt extraction.

By using Eq. (93) and taking F1 and A2 from models, the spin structure function

gd1 is evaluated for each bin. Figs. 24 and 25 show its behavior with respect to W . In

addition, gd1 versus Bjorken x for each Q2 bin are also presented in Figs. 26 and 27.

The red curve on each plot comes from the our “Models”. g1 is deeply affected by

the resonance structure, again the ∆(1232) being the most prominent one, making

g1 negative in this region. When we go to higher Q2, the effect of the resonances

diminishes and g1 approaches zero toward the quasi-elastic region.

The moments of the structure functions are calculated by integrating the structure



66

W(GeV)
1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

1
A

­1.5

­1

­0.5

0

0.5

 2 [0.19, 0.22] GeV 2(D) for Q1 A

 data1A

 model1A

sys err

W(GeV)
1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

1
A

­1.5

­1

­0.5

0

0.5

 2 [0.45, 0.54] GeV 2(D) for Q1 A

 data1A

 model1A

sys err

W(GeV)
1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

1
A

­1.5

­1

­0.5

0

0.5

 2 [0.54, 0.64] GeV 2(D) for Q1 A

 data1A

 model1A

sys err

W(GeV)
1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

1
A

­1.5

­1

­0.5

0

0.5

 2 [0.92, 1.10] GeV 2(D) for Q1 A

 data1A

 model1A

sys err

FIG. 21: Virtual photon asymmetry A1 versus W for a few Q2 bins are shown
together with systematic errors. The shade at the bottom is the total systematic
error. The other systematic errors are offset to the following vertical scales, from
top to bottom: pion and pair symmetric contamination (-0.4); dilution factor (-0.6);
radiative correction (-0.8); PbPt (-1.0); models (-1.2); polarized background (-1.4).
Uncertainity from the A2 models is a major conributer to the overall systematic error
for A1. This systematic error can be reduced once we have measurements on A2.

functions over the full kinematic region from x = 0.001 up to the quasi elastic

threshold x at W = 1.08 GeV. By using the relation,

W =
√
M2 +Q2/x−Q2 (107)

the maximum W values for the kinematic point x = 0.001 were determined for each

Q2 bin from Q2 = 0.01 to 10 GeV2.

Experimental limitations prevent us from exploring the region where x→ 0 since

it would require a very high beam energy. At the limit x = 0.001, the invariant mass

reaches up to 100 GeV. Moreover, the extrapolation of the integral is not well known

below x = 0.001. Therefore, this kinematic region was excluded from the integration.
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FIG. 22: A1 for the deuteron versus the final state invariant mass W for various Q2

bins. Systematic errors are shown as shaded area at the bottom of each plot. Our
parametrized model is also shown as a red line on each plot. Only the data points
with σstat < 0.3 and σsys < 0.2 are plotted.
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FIG. 23: Continuation of Fig. 22 for remaining Q2 bins.
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FIG. 24: g1 for the deuteron with respect to the final state invariant mass W for
many Q2 bins. The shaded area at the bottom of each plot represents the systematic
errors. Model for g1 is shown as a red line on each plot. Only data points with
σstat < 0.2 are plotted.
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FIG. 25: Continuation of Fig. 24 for remaining Q2 bins.
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FIG. 26: g1 with respect to the Bjorken variable x for many Q2 bins together with
model shown as red lines on each plot. The shaded area at the bottom of each plot
represents the systematic error. DIS curve for Q2 = 10 GeV is also shown as blue
dashed line.
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FIG. 27: Continuation of Fig. 26 for remaining Q2 bins.
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The minimum W value was always kept at 1.08 GeV, which is the quasi-elastic

threshold. Convention for the evaluation of the moments generally excludes the

quasi-elastic region. The low Q2 behavior of Γ1 is more interesting without the

elastic contribution since the effect of the ∆ resonance becomes more obvious.

The described limits of the integration require model input since the EG1b results

do not cover the full kinematic region. Therefore, the model values for g1 were used

where data are not available. The regions for which we use either the data or the

model were determined by scanning through the quality of the data for different W

regions in each Q2 bin. Data with large statistical errors were excluded from the

integration. The EG1b data for the structure function g1 starts at W = 1.15 GeV,

since below that region the radiative effects overwhelm the real data. However, we

have a reliable model that can be used for the integration. Above this value, we have

data up to W = 3 GeV depending on the Q2 bin. Figs. 26 - 27 show the behavior of

g1 data for all Q2 bins used in the integration. Also, there are some gaps in our data

that correspond to uncovered regions because of discrete beam energies. These gaps

appear only for a few Q2 bins and model values were used for the integration in those

regions. Table 47 in Appendix C.3 summarizes the W regions in which the values

from the model or the data were used for the integration. An additional constraint

can also be put on the data by considering the average kinematic points we have

extracted from the data and propagated up to this point. These kinematic variables

include ε, η and γ for each bin, so that one can calculate a cut parameter y such

that,

y =
ν

Ebeam
=
η(1− ε)
ε(γ − η)

. (108)

Then, a requirement y < 0.80 can be used to select the regions for which data can

be used for the integration. If data with large statistical errors are used in the

integration, these statistical errors will clearly be visible in the relevant Q2 values of

the moments.
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With above considerations, the integral can be divided into measured and un-

measured regions such that,

Γ1(Q2) =

∫ x(Wdata)

x=0.001

g1(x,Q2) model

+

∫ x(W=1.15)

x(Wdata)

g1(x,Q2) data (or model for gaps) (109)

+

∫ x(W=1.08)

x(W1.15)

g1(x,Q2) model

and each integration is performed according to Eqs. (99) and (102). For comparison

purposes, the plots of Γ1 will usually show the results of the integration using only

the data and using the data and model together. Of course the result obtained by

only using the data will deviate from the true value since the integral is not complete.

However, there are Q2 regions where the overall model contribution to the integral

is very small and the data alone gives a good approximation to the full integral. In

those kinematic points, the results obtained from the data alone and from the data +

model together come very close to each other. Figs. 28 - 30 show the Q2 evolution of

the first moment as measured by the EG1b experiment and also the current status of

the world data on this quantity. The higher moments Γ3
1 and Γ5

1 are also calculated

in the same way by using Eq. (99) with appropriate powers n = 3, 5. Fig. 31 shows

the results for the third moment Γ3
1 and the fifth moment Γ5

1 of g1 as extracted from

the EG1b data.

Fig. 32 shows the forward spin polarizability γ0 for the deuteron. Values cal-

culated are multiplied by 15.134 for unit conversion to [10−4 fm4]. The figure also

shows the integral part of γ0 without the kinematic factor 16M2α/Q6. Additional

information on γ0 is provided in the proton analysis note.
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FIG. 28: Γ1
1 for the deuteron versus Q2 from data only (hollow-magenta squares)

and data+model (full-blue squares), including the extrapolation to the unmeasured
kinematics. The red curve is evaluated by only using the model. Also shown are
phenomenological calculations from Soffer-Teryaev and Burkert-Ioffe, together with
the χPT results from Ji [60] (black dotted dashed line) and Bernard [61] (red dotted
line). The GDH slope (black solid line) and pQCD prediction (black dotted line) are
also shown on the plots . The systematic errors are shown for only data (magenta
shade) and data+model (blue shade) at the bottom of the plot.
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FIG. 29: The top plot is the same as Fig. 28 only zoomed into the low Q2 region.
Results from other experiments are also shown in the bottom plot, including E143
[46], HERMES [49].
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FIG. 30: Comparison of this analysis and the previous one on the Γ1
1 extraction from

EG1b. The red triangles represent the previous analysis, which was done by only
using the 1.6 and 5.7 GeV data. For clear visibility, those points are shifted to a
slightly higher Q2 by adding an offset factor. The two independent analysis results
complement each other well within statistical errors. Addition of the 2.5 and 4.2
GeV data clearly improves the medium Q2 region and the overall statistics.
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FIG. 31: Higher moments of g1 extracted from the EG1b data are shown with respect
to Q2, the third moment Γ3

1 (top), and the fifth moment Γ5
1 (bottom). The hollow

squares were calculated with no model contribution while the filled squares have
model input for the kinematic regions with no available data.
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CHAPTER III

MODELING THE WORLD DATA

As new data are generated on the structure functions, our knowledge in different

kinematic regions improves, which enables us to upgrade the models on interesting

physics quantities such as A1 and A2 for the proton, the neutron and the deuteron.

This chapter presents the latest efforts for fitting the world data to produce reliable

models, specifically for A1 and A2 for the proton and neutron. Moreover, since data

are rare on the neutron target, existing deuteron and proton data, especially with

the help of the EG1b results, provide us a platform to extract information on the

neutron spin structure functions.

The behavior of the spin structure functions and the asymmetries in the resonance

region is especially interesting because we don’t have a rigorous theory to describe

this region. Therefore, parametrization of the existing data in the resonance region

remains the only reliable option. These parameterizations are needed to extract other

physics quantities, study radiative effects and even learn about the effects of nuclear

medium on the structure of the nucleon.

The general procedure for the fits includes collection of the world data on the

specific quantities and utilization of a least-square fitting routine to determine the

optimal parameters that describe the data best by minimizing the χ2 of the fit, which

is defined by

χ2(Q2,W ) =
∑
n

(Adata(Q2,W )− Afit(Q2,W ))2

(σAdata(Q2,W ))2
(110)

where the sum is taken over all data points. Adata(Q2,W ) is the value of the data for

the specific quantity, A1 or A2, and Afit(Q2,W ) is the output of the fit function at the

kinematic point of the data. The σAdata(Q2,W ) is generally taken as the statistical

error of the data point, but for some experiments, statistical and systematic errors

were added in quadrature.

Minimization of χ2 was performed by using the MINUIT package from CERN

[112], which provides various different minimization routines. The most widely used

is MIGRAD, which is regarded as “the most efficient and complete single method,

recommended for general functions” [112]. We tried MIGRAD as well as MINOS,

to evaluate parameter errors. Also, the MINIMIZE scheme uses MIGRAD unless it
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gets into trouble, in which case it switches to SIMPLEX, which is another multi-

dimensional minimization routine, and then calls MIGRAD again. In the end, we

decided to use the MINIMIZE routine. However, we did not observe, in any of the

fits we used, a failure with MIGRAD and a switch to SIMPLEX.

Various parameterizations were tried and compared to each other. The final

functional forms are given in the following sections. The parametrized functions, in

general, also utilize other existing models such as MAID 2007 [131] as well as an

older parameterization of the same kind performed on the more limited data set of

the time. MAID is a unitary isobar model for pion photo- and electroproduction on

the nucleon. It describes the world data on the γ∗N → ∆ transition and threshold

π0 production. These existing models provided us a method to extrapolate the fit

successfully into the kinematic regions with no available data, which is the case

specifically with Ap2 and An2 parameterizations..

In the following sections, information is given on the specific parameterizations of

the existing world data on the virtual photon asymmetries A1 and A2 in the resonance

region for the proton and the neutron. We should point out that all data shown in this

chapter were averaged over ∆W = 40 MeV for plotting purposes by taking their error

weighted averages. However, fitting was performed on the individual data points at

their true kinematic values. Once the models for the spin structure functions of the

proton and the neutron were created, the deuteron models in the resonance region

were obtained by smearing the nucleon structure functions and adding them. For

this purpose, the smearing procedure developed in Ref. [74] was used.

III.1 PARAMETRIZATION OF Ap1

The EG1b experiment measured Ap1 in the resonance region with an unprecedented

precision. Therefore, the largest amount of data for this fit comes from the EG1b

experiment, in the kinematic region 0.05 GeV2 < Q2 < 5.0 GeV2. The next exper-

iment is from MIT BATES [132] and has precision data in the ∆ resonance region

for Q2 = 0.123, 0.175, 0.240 and 0312 GeV2. Then the RSS experiment [133][134],

performed in Hall-C of the Jefferson Lab, provides precision data in the region 1.0

< Q2 < 1.4 GeV2 and 1.08 GeV < W < 2.0 GeV. We also used the results from the

EG1a experiment [69], which measured Ap1 in the Q2 region from 0.15 to 1.6 GeV2.

The fit was performed in two separate steps. The first step employed a 16 param-

eter fit function. In this function, some of the parameters were used to specifically
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treat certain W regions to describe the resonant structure better. Also, the MAID

model and an extrapolation of the DIS model into the resonance region were utilized

to ensure the resulting parametrization smoothly continues in the high and low W

regions. The resulting parameters from this step were fixed and the function was

used as a static quantity in the second step fit. The second step employed a 12

parameter fit function. In this step, we also used an older parametrization and made

use of its strength in some kinematic regions. This two-step approach created a good

method to treat and fine tune certain kinematic regions and describe the resonant

structure better. The fit function for the first step can be written as:

E1 = P0 + P1 tan−1[
(
Q2 − P 2

2

)
P 2

3 ]

E2 = P4 + P5 tan−1[
(
Q2 − P 2

6

)
P 2

7 ]

E3 = 1− E1 − E2

E4 = P8 + P9 tan−1[
(
Q2 − P 2

10

)
P 2

11]

E5 = P12 + P13 tan−1[
(
Q2 − P 2

14

)
P 2

15]

C1 = 1− sin

(
π

2

[
W − 1.08

2− 1.08

])
C2 = C2

1

C3 = cos

(
π

2

[
W − 1.08

2− 1.08

])
(111)

C4 =


[
sin
(
π
[
W−1.08
1.9−1.08

])]2
W ≥ 1.9

0 W < 1.9

C5 =

sin
(
π
[
W−1.08

1.35−1.08

])
W < 1.35

0 W ≥ 1.35

M = E1C1 + E2C2 + E3C3 + E4C4 + E5C5

A
C[1]
1 =

MAM1 + (1−M)ADIS1 W ≤ 2

ADIS1 W > 2

where Pi represents parameter i, AM1 is the MAID 2007 model of Ap1 and ADIS1 is

the DIS extrapolation. A
C[1]
1 represents the calculated fit from the first step. The

parametrization for A
C[1]
1 is used in the second step fit function, which is described

by



83

Q2
ph =


0 Q2 ≤ 0.01 GeV2

1
3π

(
log(Q2)
log(10)

+ 2

)
Q2 > 0.01 GeV2

1 Q2 > 10 GeV2

Wph = π
(W − 1.08)

(2.04− 1.08)

D0 = P0 + P1 cos
(
Q2
ph

)
+ P2 cos

(
2Q2

ph

)
D1 = P3 + P4 cos

(
Q2
ph

)
+ P5 cos

(
2Q2

ph

)
(112)

D2 = P6 + P7 cos
(
Q2
ph

)
+ P8 cos

(
2Q2

ph

)
D3 = P9 + P10 cos

(
Q2
ph

)
+ P11 cos

(
2Q2

ph

)

B =


D0 sin (12Wph) +D1 sin (Wph)

+D2 sin (2Wph) +D3 sin (4Wph) W < 2.04 GeV

0 W ≤ 2.04 GeV

AC1 = (1− B)A
C[1]
1 + BAOM1

where AOM1 represents an older parametrization and AC1 is the updated parametrized

model. The total number of parameters for the whole fit is 28. During each fit

step, the minimization was performed iteratively, generally two iterations were used,

automatically passing the results of the first iteration as the starting parameters of

the second one. In the first iteration, an initial step size of 0.00001 was used on all

parameters. After the first evaluation of the χ2, MINUIT decides on the step size

values based on the first derivatives. In the second iteration, we let MINUIT continue

to decide the step sizes internally. We observed that the final step sizes are generally

very close to zero, on the order of 10−10. Also, no restrictions were employed on the

parameter limits.

Tables 22 and 23 give the initial and final values of the parameters together with

estimated errors and the first derivatives. No user defined derivatives were supplied,

in which case, MINUIT uses its own method by evaluating the finite differences over

the step size. The small step sizes we observe ensures the reliability of these first

derivatives, which in turn yields the reliability of the parameter errors. The resulting

first derivatives are generally small or practically zero for some of the parameters.

However, the parameter errors were not used to determine the systematic errors
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on the actual model. The errors on the model were determined systematically by

evaluating the differences between the new fit and various different parameterizations

from old fits.

Total number of data points for the Ap1 fit was 4325. For the step 1 fit with 16

parameters, the initial χ2 value was 22898. After the fit, a χ2 of 5231.94 was reached.

For the second step with 12 parameters, the initial χ2 was 5331.92 and the final value

became 4500.08, which results χ2/n.d.f ≈ 1.04. Figs. 33 and 34 show the resulting

fit together with the data and the other models for various Q2 regions.

TABLE 22: Parameters for the first step Ap1 fit (version number 20S1 [135]). The fit
function is given in Eq. (111). The total number of data points used in the fit was
4325. The final χ2/n.d.f ≈ 1.209 was reached at the end of the fit.

ParNo Initial Final Error First Derivatives

1 0.4 -1.01616e−01 8.42531e−01 2.01952e−03
2 0.1 -2.97618e+00 7.93359e−01 2.89470e−03
3 0.5 -3.23456e−01 2.68590e−02 -7.30760e−03
4 1.0 2.74645e+00 4.96660e−01 -2.24628e−03
5 0.4 1.21003e+00 8.04876e−01 2.13005e−03
6 0.1 3.10913e+00 7.00746e−01 2.83534e−03
7 0.5 4.56491e−05 3.39639e−04 4.65342e−03
8 1.0 2.17872e+00 4.27999e−01 2.32311e−03
9 0.1 5.08220e−01 8.64463e−01 -6.65403e−03
10 0.1 -5.99465e−01 5.56410e−01 1.04521e−02
11 0.5 -1.09332e+01 5.46744e+01 -6.88992e−14
12 1.0 -2.03878e+03 1.44157e+04 -1.98474e−12
13 1.0 3.42967e−01 8.05711e−02 1.32518e−02
14 0.1 4.38685e−01 1.43131e−01 5.90950e−03
15 1.0 1.28403e−07 1.17306e+00 1.07202e−06
16 1.0 1.01192e+00 4.94477e−01 2.97119e−03

III.2 PARAMETRIZATION OF Ap2

A similar method as described in the previous section was used to fit the Ap2 data.

Again, there were no restrictions on the parameter limits and the same initial step

sizes with two consecutive iterations were employed for MINUIT.

Data on Ap2 is sparse, which makes the fit difficult. Mainly, the RSS [136], BATES

[132] and the latest EG1b [96] results were used for this fit. The EG1b results were

obtained by linear regression between A1 + ηA2 values and η from varying beam
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FIG. 33: Ap1 parametrization for various Q2 bins. The fit is shown with the red curve.
Other curves are MAID 2007, old parametrization and the DIS extrapolation into the
resonance region. For only plotting purposes, the data from different contributing
experiments were combined over ∆W = 40 MeV, by taking their error weighted
averages (fitting was performed on the individual data points at their true kinematic
values).
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TABLE 23: Parameters for the second step Ap1 fit (version number 20S2 [135]). The
fit function is given in Eq. (112). The total number of data points used in the fit
was 4325. The final χ2/n.d.f ≈ 1.0405 was reached at the end of this fit.

ParNo Initial Final Error First Derivatives

1 0.0 2.19052e-01 4.25711e-02 -1.92465e-02
2 0.0 1.42339e-01 5.77638e-02 -1.23507e-02
3 0.0 -1.19772e-01 5.96739e-02 -8.45372e-03
4 0.0 4.27655e-01 4.96346e-02 -4.19115e-02
5 0.0 1.79650e-01 3.12603e-02 -2.84653e-01
6 0.0 3.32088e-03 6.51726e-02 6.57517e-02
7 0.0 -7.13901e-02 5.61801e-02 8.36566e-03
8 0.0 -2.57325e-01 6.96612e-02 5.24777e-03
9 0.0 2.53712e-01 7.17325e-02 1.21548e-02
10 0.0 -1.57327e-01 3.74878e-02 -1.06141e-02
11 0.0 1.53637e-01 5.66157e-02 -3.72469e-03
12 0.0 -2.91941e-01 5.66538e-02 -1.40743e-02
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FIG. 34: Ap1 parametrization for various Q2 bins (continuation of Fig. 33).
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energies. After various trials with different fit functions, the following form was

employed:

E3 = P 2
0

(π
2
− tan−1

(
Q2P 2

1 + P2

))
E2 =

P 2
3 + tan−1 (Q2P 2

4 + P5)
π
2

+ P 2
3

E1 = 1− E2 − E3

E4 =
P 2

6

(log (Q2)− P7)2 + P 2
8 + 0.0001

C1 = 1−
[
W − 1.08

2− 1.08

]
C2 =

[
1− sin

(
π

2

[
W − 1.08

2− 1.08

])]2

(113)

C3 = cos

(
π

2

[
W − 1.08

2− 1.08

])

C4 =

sin
(
π
[
W−1.3
1.8−1.3

])
1.3 ≤ W ≤ 1.8

0 otherwise

M = E1C1 + E2C2 + E3C3

AC2 =

MAM2 + (1−M)ADIS2 + E4C4 W ≤ 2

ADIS2 W > 2

Similar to the previous section, Pi represents parameter i and AC2 represents the

calculated fit, while AM2 is the MAID model and ADIS2 is the DIS extrapolation. The

Wandzura-Wilczek relation and the Burkhardt-Cottingham Sum Rule [8] were used

to estimate the DIS extrapolation of A2 into the resonance region and were used as

a constraint in the fit. A smooth transition between the resonance region and the

DIS region was required. In addition, another constraint, the Soffer limit provided a

general estimate and a boundary on the fit results. A penalty was applied to the χ2

for cases when the calculated fit exceeded the Soffer limit such that:

χ2(Q2,W ) =
∑
n

(|Afit(Q2,W )| − Asoffer(Q2,W ))2

0.005
. (114)

The fit was performed in several iterations. In the first iteration, the values of

parameters P6, P7 and P8 were kept constant, and in the second iteration, they were
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released. The resulting parameters from these first calculations were used as the

starting parameters for the next round and the same fit was repeated twice, again

first fixing parameters P6, P7, P8 and releasing them after the first 6 parameters

reached their optimal values.

The total number of data points for the Ap2 fit was 344. The final χ2 of the fit

was 418.8, resulting in a χ2/n.d.f ≈ 1.21. Table 24 shows the resulting parameter

values and Fig. 35 shows the fit results together with the available data for various

Q2 regions.

TABLE 24: Parameters for the Ap2 fit given in Eq. (113). The final χ2/n.d.f ≈ 1.21
was reached at the end of this fit. The total number of data points used in the fit
was 344.

ParNo Final Error First Derivatives

1 5.92348e−01 1.97150e−01 9.30561e−04
2 1.66989e+02 4.89463e−01 -2.21883e−04
3 -2.79601e+04 1.62278e+02 -2.99000e−07
4 -1.80099e+00 4.56000e−01 2.26247e−04
5 3.66274e+00 7.98533e+02 5.63709e−10
6 -7.76211e+04 4.47812e+06 3.92323e−15
7 2.72528e−01 5.91656e−02 1.13762e−02
8 -1.77948e−01 9.76423e−02 4.03108e−03
9 4.72596e−01 1.06130e−01 -2.63065e−03

III.3 PARAMETRIZATION OF An2

It is not possible to make a direct measurement on a polarized neutron target to

extract the asymmetries and structure functions of the neutron. The best approx-

imates to a polarized neutron target are polarized 3He and deuterium targets. In

both cases, the nuclear effects smear the nucleon structure, making it difficult to

isolate the information from a single nucleon. Currently, there are limited data on

a transversely polarized deuteron target [133]. However, smearing makes it difficult

to extract neutron information for An2 from deuteron because proton dominates. In

the resonance region, there are also two other experiments that took measurements

on a polarized 3He target. The first experiment was E94-107, which took place in

Hall-A at Jefferson Lab [137][138]. The experiment measured the spin-dependent

cross section for the inclusive scattering of polarized electrons from a polarized 3He
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FIG. 35: Ap2 parametrization (red line) for various Q2 bins, for which there are
available data, are shown together with other models described in the text. The
shaded area represents the Soffer limit. The RSS (red), BATES (blue) and EG1b
(green circle) data are also plotted.
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target in the quasi-elastic and resonance regions for 0.1 < Q2 < 0.9 GeV2. By using

both the transverse and longitudinally polarized targets, the experiment extracted

the spin structure functions g1 and g2 for 3He. The second experiment, E01-012, also

took place in Hall-A at Jefferson Lab to measure the quark-hadron duality on the

neutron by using a polarized 3He target [139][140]. This experiment also extracted

the spin structure functions g1 and g2 for 3He by measuring the cross section for

inclusive electron scattering off longitudinally and transversely polarized targets.

Since we are merely trying to model the general behavior of An2 in the resonance

region, we decided to use these data on 3He to extract some An2 data for our fits. We

first applied simple nuclear corrections to get the polarized structure function of the

neutron from the 3He data by using our latest model for the proton,

gn1 =
gHe

1 + 2.0× 0.027g
p[m]
1

0.87
(115)

σgn1 =
σgHe

1

0.87
(116)

gn2 =
gHe

2 + 2.0× 0.027g
p[m]
2

0.87
(117)

σgn2 =
σgHe

2

0.87
(118)

where the factor 0.87 is for the effective neutron polarization in 3He while 0.027 is

that of the proton, with two protons. Then we calculated the corresponding virtual

photon asymmetries A1 and A2 for the neutron by using these results,

A1 =
g1 − γ2g2

F1

(119)

σ2
A1

=

(
σg1 − γ2σg2

F1

)2

(120)

A2 =
γ

F1

(g1 + g2) (121)

σ2
A2

=

(
γ

F1

(σg1 + σg2)

)2

(122)

where we used the existing models for F1, which are described in section I.7. Once

we have the relevant data, we utilized our fit function given in (113), which was also

used to fit the proton data on Ap2. The total number of data points we had for this

case was 161. The initial χ2 of the fit with the starting parameters was 350.55 while

the final χ2 after the minimization was 190.23, yielding χ2/n.d.f = 1.18. Table 25

shows the initial and the final parameters of the An2 fit. Figs. 36 and 37 show the fit

together with the experimental data for various Q2 values with available data.
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FIG. 36: An2 parametrization for various Q2 bins with available data. The red line
represents the fit. Blue data points are from the E94-107 experiment. The MAID
model (green), the DIS extrapolation (brown) and older parametrization (cyan) are
also plotted. The shaded region is the Soffer limit.
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TABLE 25: Parameters for the An2 fit given in Eq. 113. The final χ2/n.d.f ≈ 1.18
was reached at the end of this fit. The total number of data points used in the fit
was 161.

ParNo Initial Final Error First Derivatives

1 0.7 -4.56143e−08 5.79134e+00 -2.72043e−09
2 1.0 -3.56573e+00 1.41421e+00 0.00000e+00
3 -2.0 6.91149e+01 1.41421e+00 0.00000e+00
4 1.0 4.64862e−01 9.00620e−02 8.86916e−05
5 1.0 -1.64811e+01 3.09743e−02 2.48725e−03
6 -1.0 -8.14488e+02 3.06294e+00 -1.08100e−05
7 0.07 6.24803e−01 2.07558e−02 -1.21569e−03
8 0.0 -5.58762e−01 1.21758e−01 9.07721e−05
9 0.2 1.36991e+00 5.60160e−02 2.78096e−04
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FIG. 37: An2 parametrization for various Q2 bins with available data. The red line
represents the fit. The data from E01-012 is also shown (red) together with the
MAID model (green), the DIS extrapolation (brown) and an older parametrization
(cyan). The shaded region is the Soffer limit.

III.4 PARAMETRIZATION OF An1 BY USING THE DEUTERON

DATA

The main ingredients for a fit of A1 for the neutron are the data on the deuteron

spin structure function g1 and the convolution procedure described in Refs. [74][141]

and appendix D. Extraction of the neutron information requires a careful study of

the nuclear effects, especially the Fermi motion, which is primarily considered in the

convolution procedure. Of course, the D-wave correction was also applied. Moreover,
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using the best possible fits to the protondata is essential for the best results with this

method. Since the EG1b experiment took data on both of these targets, we have a

unique opportunity to extract the neutron asymmetries and structure functions by

using the results from EG1b.

The fitting mechanism for this case is quite different than in the previous cases.

The fitted data come from the ratio of deuteron structure functions g1/F1 extracted

from measurements of A||. The results of the EG1b experiment, described in this

thesis, were used as well as the measurements from the RSS [133] and E143 [46]

experiments. A fit function was employed to parametrize An1 and the parametrized An1

was used in the smearing procedure, together with the Ap1 parametrization described

in section III.1. The smearing function combines the information for the proton and

neutron by taking nuclear effects like Fermi motion into account and calculates the

deuteron structure functions gd1 and F d
1 . The ratio of these two was compared to

data to calculate the χ2 of the fit according to Eq. (110). After the minimization

of the χ2, the resulting parameters were used in the fit function for the neutron to

determine the parametrized values of An1 .

For the fit function, the parameterizations of Ap1 and Ap2, described in Eqs. (111)

and (113), were both tried. Eventually, the Ap2 parametrization in Eq. (113), which

was also used for An2 , seemed to described the data best. The total number of data

points for this fit was 3175. The final χ2 was 2503.41 which yields χ2/n.d.f ≈ 1.26

The current results describe the data well in most kinematics as can be seen in Fig.

38. The model for An1 obtained by using the final parameters is also shown in Fig.

39.

Finally, once we have reliable models for the proton and neutron structure func-

tions, we can calculate the model g1 for the deuteron by properly smearing the proton

and neutron. As a result, we have both experimental data on the deuteron spin struc-

ture function g1 as well as its model. We can then extract an experimental value for

the neutron structure function gn1 from this input using the following Equation:

g
n[data]
1 =

1

1− 1.5wD
(g
d[data]
1 − gd[model]

1 ) + g
n[model]
1 (123)

where wD stands for D-state probability. This assumes that any difference between

the measured and model values of gd1 is due to a difference δgn1 between the “true”

value for gn1 and our model, since the corresponding model for gp1 (that also enters

gd1) is constrained with much higher precision from the free proton data. Hence,
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g
n[data]
1 = g

n[model]
1 + δgn1 . In principle, one would have to “unswear” this deviation

δgn1 before adding it to the model gn1 to get the data-driven value; however, due to

our fit method, this deviation is already very small and therefore it is sufficient to

correct only for the reduced polarization inside deuterium (the D-state effect).

The statistical and systematic errors propagate as

σstatn[data] =
1

1− 1.5wD
σstatd[data] (124)

σsysn[data] =
1

1− 1.5wD
σsysd[data]. (125)

However, since this extraction depends on the model choice, we need to vary both

the neutron and proton models and add the differences coming from model choices

to the total systematic error in quadrature

σsystotn[data] =

(σsysn[data])
2 +

(∑
i

[g
n[data]
1 − gn[i]

1 ]

)2
1/2

. (126)

where summation is over different model choices and g
n[i]
1 represents the extracted

result for model choice i. The results for this extraction are shown in Fig. 40 for a

few Q2 bins.

III.5 ADDITIONAL COMMENTS

The work on modeling the world data is a continuous and iterative procedure. Some

of the results have certain model dependencies. For example, the EG1b results

for A1 have a slight dependence on the A2 models (see Ref. [96]). By getting

a better parametrization for A2, the A1 model can be improved and in turn, the

A2 parametrization can be re-visited to create a better model on this quantity. In

addition, the data on these quantities are constantly improving in different kinematic

ranges. The efforts will continue as these new data come into existence. In particular,

the EG4 experiment [142] will allow us to extend our parameterizations of Ap1, An1

into the lower Q2 range and give us opportunity to resume our efforts. Similarly, new

results from EG1-DVCS will be incorporated into improving our fits.
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FIG. 38: The model for g1/F1 for the deuteron (red solid line), which was calculated
from the parametrized An1 and Ap1 by applying the smearing procedure, is plotted
together with the experimental data points for various Q2 bins. Together with the
EG1b experiment (blue), the RSS (red) and E143 (green) data are also shown. As
usual, the green line represents MAID and the brown line is the DIS extrapolation.
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FIG. 39: The parametrized A1 for the neutron (red curve) is shown for a few Q2 bins.
Also shown are the MAID curve (green) and the model of A1 proton, for comparison
purposes.



97

W
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

 n
e

u
tr

o
n

1
/F 1

g

­1

­0.8

­0.6

­0.4

­0.2

0

0.2

0.4

0.6

0.8

1

 Range2Q
0.131 ­ 0.156

 bin2  for a Qn
1

/Fn

1
W distribution of g

  model
p

1
/Fp

1
g

 calcn

1
/Fn

1
g

 disn

1
/Fn

1
g

 EG1bn
1

/Fn

1
g

W
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

 n
e

u
tr

o
n

1
/F 1

g

­1

­0.8

­0.6

­0.4

­0.2

0

0.2

0.4

0.6

0.8

1

 Range2Q
0.223 ­ 0.266

 bin2  for a Qn
1

/Fn

1
W distribution of g

  model
p

1
/Fp

1
g

 calcn

1
/Fn

1
g

 disn

1
/Fn

1
g

 EG1bn
1

/Fn

1
g

W
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

 n
e

u
tr

o
n

1
/F 1

g

­1

­0.8

­0.6

­0.4

­0.2

0

0.2

0.4

0.6

0.8

1

 Range2Q
0.266 ­ 0.317

 bin2  for a Qn
1

/Fn

1
W distribution of g

  model
p

1
/Fp

1
g

 calcn

1
/Fn

1
g

 disn

1
/Fn

1
g

 EG1bn
1

/Fn

1
g

W
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

 n
e

u
tr

o
n

1
/F 1

g

­1

­0.8

­0.6

­0.4

­0.2

0

0.2

0.4

0.6

0.8

1

 Range2Q
0.379 ­ 0.452

 bin2  for a Qn
1

/Fn

1
W distribution of g

  model
p

1
/Fp

1
g

 calcn

1
/Fn

1
g

 disn

1
/Fn

1
g

 EG1bn
1

/Fn

1
g

W
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

 n
e

u
tr

o
n

1
/F 1

g

­1

­0.8

­0.6

­0.4

­0.2

0

0.2

0.4

0.6

0.8

1

 Range2Q
0.645 ­ 0.770

 bin2  for a Qn
1

/Fn

1
W distribution of g

  model
p

1
/Fp

1
g

 calcn

1
/Fn

1
g

 disn

1
/Fn

1
g

 EG1bn
1

/Fn

1
g

W
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

 n
e

u
tr

o
n

1
/F 1

g

­1

­0.8

­0.6

­0.4

­0.2

0

0.2

0.4

0.6

0.8

1

 Range2Q
1.309 ­ 1.563

 bin2  for a Qn
1

/Fn

1
W distribution of g

  model
p

1
/Fp

1
g

 calcn

1
/Fn

1
g

 disn

1
/Fn

1
g

 EG1bn
1

/Fn

1
g

FIG. 40: Parametrized g1/F1 (red dashed line) for the neutron is plotted together
with g1/F1 neutron (blue data points) extracted from the EG1b deuteron data ac-
cording to Eq. (123). The systematic errors are shown as green shades at the bottom
of each plot. The same quantity for proton is also shown for comparison purposes
(blue dashed line).
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APPENDIX A

DST VARIABLES

In the DST tables, the range (R) of a variable is defined in terms of the offset (o),

the multiplier (m), the sign (s), that determines whether the variable is signed (1)

or not (0), and the number of bits (n) for the variable,

R =

[
−
(

2n

m
− o
)
∗ s ;

(
2n

m
− o
)]

. (127)

This is the scheme used in the DST libraries to determine the maximum and minimum

acceptable values for the variables.

TABLE 26: DST variables: particle ID. SEB is the standard particle ID used in
RECSIS, whereas p id(DST) is the DST equivalent.

SEB ID p id(DST) particle
11 1 electron

2212 2 proton
2112 3 neutron
211 4 π+

-211 5 π−

321 6 K+

-321 7 K−

45 8 deuteron
49 9 3He
47 10 4He
22 11 photon

-11 12 positron

TABLE 27: DST event headers

name offset multiplier signed bits definition
event 0.0 1.0 0 27 event number from BOS file
n part 0.0 1.0 0 5 number of particles in the event
start time 0.0 100.0 1 14 event start time
raster x 0.0 1.0 0 16 x coordinate of the raster position
raster y 0.0 1.0 0 16 y coordinate of the raster position
trigbits 0.0 1.0 0 16 trigger bit
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TABLE 28: DST scaler variables and run information

name offset multiplier signed bits definition
CLOCK UG 0.0 1.0 0 31 live time ungated clock
CLOCK G 0.0 1.0 0 31 live time gated clock
FC UG 0.0 1.0 0 31 live time ungated faraday cup
FC G 0.0 1.0 0 31 live time gated faraday cup
EVMin 0.0 1.0 0 27 first event of the helicity state
EVmax 0.0 1.0 0 27 last event of the helicity state
clockug 0.0 1.0 0 19 ungated clock
clockg 0.0 1.0 0 19 gated clock
fcupug 0.0 1.0 0 12 ungated faraday cup
fcupg 0.0 1.0 0 12 gated faraday cup
synchug 0.0 1.0 0 16 ungated SLM
synchg 0.0 1.0 0 16 gated SLM
PMTTop 0.0 1.0 0 10 PMT output
PMTBottom 0.0 1.0 0 10 PMT output
PMTBeamRight 0.0 1.0 0 10 PMT output
PMTBeamLeft 0.0 1.0 0 10 PMT output
BeamE 0.0 1.0 0 16 Beam energy
BeamI 0.0 10.0 0 10 Beam current
TorusI 0.0 1.0 1 12 Torus current
TargetI 0.0 1.0 1 12 Target current
BeamPol 0.0 100.0 1 7 Beam polarization
TargetPol 0.0 100.0 1 7 Target polarization
BadRun 0.0 1.0 0 32 Run flag
Target 0.0 1.0 0 7 Target type
PolPlate 0.0 1.0 0 2 Half-wave plate status



100

TABLE 29: DST particle variables

name offset multiplier signed bits definition
p id 0.0 1.0 0 4 particle identifier
p x 0.0 10000.0 1 16 momentum
p y 0.0 10000.0 1 16 momentum
p z 0.0 10000.0 1 17 momentum
v x 0.0 10.0 1 9 vertex coordinates
v y 0.0 10.0 1 9 vertex coordinates
v z -57.0 10.0 1 10 vertex coordinates
q 0.0 1.0 1 1 charge
beta 0.0 1000.0 0 11 beta
sector 0.0 1.0 0 3 particle sector
chi sqr 0.0 100.0 0 9 chi squared of track fit
cc pe 0.0 10.0 0 10 number of photoelectrons in CC
cc chi sqr 0.0 1000.0 0 9 not used
trl1 theta 0.0 10.0 0 11 DC1 angle
trl1 phi 0.0 10.0 0 11 DC1 angle
trl1 x 0.0 1.0 0 9 DC1 coordinate
trl1 y 0.0 1.0 0 9 DC1 coordinate
trl1 z 0.0 1.0 0 9 DC1 coordinate
sc e 0.0 10.0 0 10 energy deposited in SC
ec in 0.0 100.0 0 8 EC inner energy
ec out 0.0 100.0 0 8 EC outer energy
ec tot 0.0 100.0 0 8 EC total energy
ec pos x 0.0 1.0 1 10 hit position in EC
ec pos y 0.0 1.0 1 10 hit position in EC
ec pos z 0.0 1.0 1 10 hit position in EC
ec m2hit 0.0 1.0 0 11 m2 of EC shower
sc paddle 0.0 1.0 0 6 TOF paddle identifier
tdc time 0.0 100.0 0 15 time of flight
track length 0.0 10.0 0 14 path length
flag 0.0 1.0 1 16 status EVNT+10
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TABLE 30: DST particle variables (added later to use the geometric and timing
cuts).

name offset multiplier signed bits definition
sc x 0.0 1.0 1 10 sc position
sc y 0.0 1.0 1 10 sc position
sc z 0.0 1.0 1 10 sc position
sc cx 0.0 1000.0 1 10 sc direction cosine
sc cy 0.0 1000.0 1 10 sc direction cosine
sc cz 0.0 1000.0 1 10 sc direction cosine
cc time 0.0 100.0 0 15 cc time
cc status 0.0 1.0 0 15 cc status flag
cc r 0.0 10.0 0 15 cc radial distance
cc sec 0.0 1.0 0 3 cc sector
sc time 0.0 100.0 0 15 sc time
sc status 0.0 1.0 0 15 sc status flag
sc r 0.0 10.0 0 15 sc radial distance
sc sec 0.0 1.0 0 3 sc sector

TABLE 31: DST variables: helicity flag

helicity flag true helicity state
1 1 first state of the pair
2 0 first state of the pair
3 1 second state of the pair
4 0 second state of the pair
-1 1 bad helicity flag
-2 0 bad helicity flag
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APPENDIX B

FIDUCIAL CUTS

B.1 INBENDING FIDUCIAL CUTS

The fiducial cut limits for φ and θ are given by:

30◦ −∆φ < φ < 30◦ + ∆φ (128)

and

θ > θcut, (129)

where the cut limits ∆φ and θcut are defined by

∆φ = A · (sin(θ − θcut))exp (130)

with

exp = B ·
(
pel ·

3375A

ITorus

)C
(131)

and

θcut = D +
E

(pel + F ) 3375A
ITorus

. (132)

These cuts are used for the part of analysis where backgrounds and contaminations

are calculated. They are not used for asymmetry measurements. Instead, loose cuts

that remove the direct PMT hits are used in that case. The table of loose fiducial

cuts is also included below.

B.2 OUTBENDING FIDUCIAL CUTS

The following cuts are applied to the outbending data when studying backgrounds

and contaminations. The parameter values for the fiducial cut are given in the table.

No loose fiducial cuts were applied to the outbending data for asymmetry analysis.

30◦ −∆φ < φ < 30◦ + ∆φ (133)

and

θcut < θ < θhigh, (134)

where

∆φ = A · (sin(θ − 6.5◦))exp (135)
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exp = B ·
(1

4
pel

)C
(136)

θcut = D + E ·
(

1− 1

4
pscale

)F
(137)

θhigh = min(40◦, θnom) (138)

θnom =
35◦

(GeV/c)1/3
·
[1

5

(
pel ·

3375A

| ITorus |
+ 2.5GeV/c

)] 1
3

(139)

pscale = pel ·
1500A

| ITorus |
. (140)

TABLE 32: Fiducial cut parameters for the inbending data. Momentum is in GeV
and angles are in degrees. These cuts are not used for asymmetry measurements.

Parameter p <3 GeV p >3 GeV

A 36 36
B 0.28 0.25
C 0.30 0.30
D 10 10
E 16.72 16.72
F 0.06 0.06
φlim 20 20

TABLE 33: Loose fiducial cut parameters for the inbending data. These cuts remove
the direct PMT hits only. They can be applied in case of asymmetry measurements
but cannot be applied to any acceptance dependent measurements.

Parameter p <3 GeV p >3 GeV

A 41 41
B 0.26 0.26
C 0.30 0.30
D 9 8
E 16.72 16.72
F 0.06 0.06
φlim 21.5 21.5
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TABLE 34: Fiducial cut parameters for the outbending data. Momentum is in GeV
and angles are in degrees. These cuts are not used for asymmetry measurements but
they are used for background analysis.

Parameter p <3 GeV (−2250 A) p >3 GeV (−2250 A) −1500 A

A 34 45 34
B 0.28 0.54 0.33
C 0.22 0.21 0.22
D 5 9.5 6.2
E 3 -4 3
F 1.46 1.2 1.46

Gupper 0.15 0.3 0.15
Hupper -0.09 0.1 -0.09
Glower 0.15 0.3 0.15
Hlower -0.09 0.1 -0.09
φhilim 21 21 21
φlolim 22 22 22

offsetouter 1.2 -0.6 1.2
offsetinner 0 0 0
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APPENDIX C

ADDITIONAL TABLES

C.1 PION AND PAIR SYMMETRIC CONTAMINATION PARAME-

TERS

C.2 SYSTEMATIC ERRORS

C.3 KINEMATIC REGIONS FOR MODEL USAGE IN Γ1
1 INTEGRA-

TION

TABLE 35: Standard π−/e− ratio parameters a and b.

Target E Torus a b
ND3 1606 1500 -14.27 ± 2.968 0.211 ± 0.092
ND3 1606 -1500 -11.06 ± 2.600 0.217 ± 0.118
NH3 1606 1500 -17.27 ± 3.112 0.289 ± 0.092
NH3 1606 -1500 -11.62 ± 3.205 0.270 ± 0.146
ND3 1723 -1500 -11.06 ± 2.600 0.217 ± 0.118
NH3 1723 -1500 -11.62 ± 3.205 0.270 ± 0.146
NH3 2286 1500 -4.946 ± 1.314 0.006 ± 0.042
ND3 2561 1500 -5.190 ± 1.229 0.022 ± 0.040
ND3 2561 -1500 -4.250 ± 0.775 -0.009 ± 0.035
NH3 2561 -1500 -4.373 ± 0.815 -0.003 ± 0.037
ND3 4238 2250 -4.637 ± 2.096 0.036 ± 0.080
ND3 4238 -2250 -4.192 ± 1.008 0.026 ± 0.049
NH3 4238 2250 -5.051 ± 1.897 0.043 ± 0.073
NH3 4238 -2250 -4.656 ± 1.266 0.045 ± 0.062
ND3 5615 2250 -3.791 ± 1.577 0.023 ± 0.060
NH3 5615 2250 -4.143 ± 2.004 0.030 ± 0.076
ND3 5725 2250 -2.859 ± 1.584 -0.005 ± 0.060
ND3 5725 -2250 -4.322 ± 0.996 0.046 ± 0.047
NH3 5725 2250 -3.631 ± 1.482 0.017 ± 0.057
NH3 5725 -2250 -4.272 ± 0.872 0.042 ± 0.042
ND3 5743 -2250 -4.695 ± 1.022 0.064 ± 0.049
NH3 5743 -2250 -4.333 ± 0.844 0.040 ± 0.040
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TABLE 36: Standard π−/e− ratio parameters c and d.

Target E Torus c d
ND3 1606 1500 6.417 ± 3.119 -0.231 ± 0.102
ND3 1606 -1500 3.986 ± 2.703 -0.271 ± 0.126
NH3 1606 1500 9.325 ± 3.013 -0.297 ± 0.093
NH3 1606 -1500 4.386 ± 3.763 -0.326 ± 0.185
ND3 1723 -1500 3.986 ± 2.703 -0.271 ± 0.126
NH3 1723 -1500 4.386 ± 3.763 -0.326 ± 0.185
NH3 2286 1500 0.218 ± 1.404 -0.048 ± 0.047
ND3 2561 1500 -0.011 ± 1.360 -0.042 ± 0.045
ND3 2561 -1500 -0.935 ± 0.828 -0.005 ± 0.036
NH3 2561 -1500 -0.727 ± 0.812 -0.015 ± 0.037
ND3 4238 2250 -0.546 ± 1.574 -0.033 ± 0.060
ND3 4238 -2250 -0.648 ± 0.785 -0.030 ± 0.037
NH3 4238 2250 0.010 ± 1.393 -0.048 ± 0.054
NH3 4238 -2250 -0.381 ± 0.983 -0.042 ± 0.046
ND3 5615 2250 -0.731 ± 1.130 -0.022 ± 0.042
NH3 5615 2250 -0.483 ± 1.402 -0.030 ± 0.053
ND3 5725 2250 -1.488 ± 1.158 0.000 ± 0.044
ND3 5725 -2250 -0.372 ± 0.749 -0.034 ± 0.035
NH3 5725 2250 -0.713 ± 1.049 -0.024 ± 0.040
NH3 5725 -2250 -0.373 ± 0.655 -0.034 ± 0.030
ND3 5743 -2250 -0.191 ± 0.775 -0.045 ± 0.036
NH3 5743 -2250 -0.342 ± 0.630 -0.035 ± 0.029
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TABLE 37: Total π−/e− ratio parameters a and b.

Target E Torus a b
ND3 1606 1500 -5.851 ± 1.378 0.117 ± 0.042
ND3 1606 -1500 -2.563 ± 1.299 0.015 ± 0.065
NH3 1606 1500 -6.057 ± 1.484 0.118 ± 0.045
NH3 1606 -1500 -2.703 ± 1.699 0.019 ± 0.086
ND3 1723 -1500 -2.563 ± 1.299 0.015 ± 0.065
NH3 1723 -1500 -2.703 ± 1.699 0.019 ± 0.086
NH3 2286 1500 -2.423 ± 0.761 0.043 ± 0.023
ND3 2561 1500 -2.675 ± 0.663 0.055 ± 0.020
ND3 2561 -1500 -2.728 ± 0.563 0.052 ± 0.022
NH3 2561 -1500 -2.628 ± 0.600 0.046 ± 0.023
ND3 4238 2250 -0.394 ± 0.914 0.039 ± 0.031
ND3 4238 -2250 -1.112 ± 0.651 0.063 ± 0.026
NH3 4238 2250 -0.584 ± 0.881 0.043 ± 0.029
NH3 4238 -2250 -1.204 ± 0.711 0.063 ± 0.029
ND3 5615 2250 0.087 ± 0.516 0.016 ± 0.017
NH3 5615 2250 -0.043 ± 0.585 0.019 ± 0.020
ND3 5725 2250 0.176 ± 0.516 0.014 ± 0.017
ND3 5725 -2250 -0.907 ± 0.411 0.051 ± 0.016
NH3 5725 2250 0.037 ± 0.510 0.018 ± 0.017
NH3 5725 -2250 -0.921 ± 0.404 0.050 ± 0.016
ND3 5743 -2250 -1.012 ± 0.427 0.055 ± 0.017
NH3 5743 -2250 -1.078 ± 0.414 0.053 ± 0.016
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TABLE 38: Total π−/e− ratio parameters c and d.

Target E Torus c d
ND3 1606 1500 0.692 ± 1.889 -0.106 ± 0.057
ND3 1606 -1500 -0.334 ± 1.517 -0.088 ± 0.078
NH3 1606 1500 0.950 ± 2.034 -0.110 ± 0.062
NH3 1606 -1500 -0.243 ± 1.995 -0.092 ± 0.104
ND3 1723 -1500 -0.334 ± 1.517 -0.088 ± 0.078
NH3 1723 -1500 -0.243 ± 1.995 -0.092 ± 0.104
NH3 2286 1500 -1.415 ± 0.947 -0.026 ± 0.029
ND3 2561 1500 -1.281 ± 0.788 -0.025 ± 0.024
ND3 2561 -1500 -0.875 ± 0.738 -0.039 ± 0.027
NH3 2561 -1500 -0.933 ± 0.789 -0.037 ± 0.029
ND3 4238 2250 -1.846 ± 0.705 -0.014 ± 0.023
ND3 4238 -2250 -1.066 ± 0.502 -0.041 ± 0.019
NH3 4238 2250 -1.671 ± 0.678 -0.019 ± 0.022
NH3 4238 -2250 -1.013 ± 0.552 -0.044 ± 0.022
ND3 5615 2250 -1.535 ± 0.364 -0.001 ± 0.012
NH3 5615 2250 -1.466 ± 0.418 -0.004 ± 0.014
ND3 5725 2250 -1.558 ± 0.363 0.000 ± 0.012
ND3 5725 -2250 -0.767 ± 0.293 -0.026 ± 0.011
NH3 5725 2250 -1.472 ± 0.360 -0.003 ± 0.012
NH3 5725 -2250 -0.783 ± 0.288 -0.026 ± 0.011
ND3 5743 -2250 -0.707 ± 0.306 -0.030 ± 0.012
NH3 5743 -2250 -0.681 ± 0.294 -0.030 ± 0.011
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TABLE 39: e+/e− ratio parameters a and b.

Target E Torus a b
ND3 1606 1500 -5.630 ± 0.058 0.122 ± 0.001
ND3 1606 -1500 -0.959 ± 0.015 0.004 ± 0.000
NH3 1606 1500 -5.962 ± 0.067 0.131 ± 0.002
NH3 1606 -1500 -1.540 ± 0.015 0.014 ± 0.000
ND3 1723 -1500 0.152 ± 0.015 -0.017 ± 0.000
NH3 1723 -1500 0.079 ± 0.015 -0.015 ± 0.000
NH3 2286 1500 -2.126 ± 0.030 0.044 ± 0.000
ND3 2561 1500 -2.225 ± 0.027 0.056 ± 0.000
ND3 2561 -1500 -2.596 ± 0.008 0.063 ± 0.000
NH3 2561 -1500 -1.983 ± 0.009 0.044 ± 0.000
ND3 4238 2250 -1.591 ± 0.050 0.084 ± 0.001
ND3 4238 -2250 -2.419 ± 0.026 0.120 ± 0.001
NH3 4238 2250 -1.645 ± 0.058 0.086 ± 0.002
NH3 4238 -2250 -2.449 ± 0.024 0.118 ± 0.001
ND3 5615 2250 -1.181 ± 0.044 0.086 ± 0.001
NH3 5615 2250 -1.230 ± 0.040 0.087 ± 0.001
ND3 5725 2250 -0.929 ± 0.044 0.076 ± 0.001
ND3 5725 -2250 -2.299 ± 0.018 0.125 ± 0.000
NH3 5725 2250 -1.068 ± 0.039 0.079 ± 0.001
NH3 5725 -2250 -2.308 ± 0.017 0.123 ± 0.000
ND3 5743 -2250 -2.453 ± 0.018 0.126 ± 0.000
NH3 5743 -2250 -2.289 ± 0.017 0.128 ± 0.000
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TABLE 40: e+/e− ratio parameters c and d.

Target E Torus c d
ND3 1606 1500 -4.707 ± 0.090 -0.032 ± 0.002
ND3 1606 -1500 -6.743 ± 0.029 0.016 ± 0.001
NH3 1606 1500 -4.221 ± 0.104 -0.046 ± 0.003
NH3 1606 -1500 -6.397 ± 0.028 0.004 ± 0.001
ND3 1723 -1500 -6.663 ± 0.028 0.025 ± 0.001
NH3 1723 -1500 -6.564 ± 0.027 0.021 ± 0.001
NH3 2286 1500 -3.952 ± 0.042 -0.003 ± 0.001
ND3 2561 1500 -3.538 ± 0.038 -0.013 ± 0.001
ND3 2561 -1500 -3.269 ± 0.013 -0.025 ± 0.000
NH3 2561 -1500 -3.908 ± 0.015 -0.013 ± 0.000
ND3 4238 2250 -1.899 ± 0.039 -0.052 ± 0.001
ND3 4238 -2250 -1.190 ± 0.022 -0.084 ± 0.001
NH3 4238 2250 -1.885 ± 0.045 -0.053 ± 0.001
NH3 4238 -2250 -1.208 ± 0.020 -0.083 ± 0.000
ND3 5615 2250 -1.079 ± 0.033 -0.065 ± 0.001
NH3 5615 2250 -1.025 ± 0.030 -0.068 ± 0.001
ND3 5725 2250 -1.169 ± 0.033 -0.061 ± 0.001
ND3 5725 -2250 -0.415 ± 0.015 -0.090 ± 0.000
NH3 5725 2250 -1.097 ± 0.029 -0.063 ± 0.001
NH3 5725 -2250 -0.434 ± 0.014 -0.089 ± 0.000
ND3 5743 -2250 -0.417 ± 0.015 -0.089 ± 0.000
NH3 5743 -2250 -0.438 ± 0.014 -0.093 ± 0.000
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TABLE 41: Systematic errors σpercentsys for each Q2 bin as a percentage of statistical
errors on A1 +ηA2 for the deuteron are listed for 1 GeV data. The percentage values
are calculated according to Eq. (105) and evaluated in 1.15 < W < 2.60 GeV.

Q2 bin Total Back. Dilution Radiative PbPt Model Pol. Back.
4 11 0.02 6 3 9 0.8 1
5 11 0.02 5 3 10 0.8 1
6 13 0.04 6 4 11 1 1
7 11 0.04 3 4 9 0.8 1
8 10 0.04 3 4 8 0.9 1
9 11 0.06 3 5 9 1 1
10 11 0.06 3 6 9 1 1
11 12 0.07 3 6 10 1 2
12 13 0.08 4 6 11 2 2
13 14 0.07 5 6 11 2 2
14 13 0.07 4 6 12 2 2
15 13 0.07 4 6 11 2 2
16 12 0.05 3 7 10 2 2
17 13 0.06 4 10 8 3 3
18 14 0.05 3 11 7 3 3
19 15 0.07 4 12 8 3 3
20 16 0.07 4 13 8 3 4
21 16 0.2 4 12 9 3 4
22 16 0.2 4 12 9 3 5
23 14 0.1 4 10 8 3 4
24 13 0.1 4 10 7 3 4
25 11 0.06 3 9 6 2 2
26 10 0.05 3 7 6 2 2
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TABLE 42: Systematic errors σpercentsys (Q2) on A1 + ηA2 for the deuteron are listed
for 2 GeV data. The percentage values are calculated according to Eq. (105) and
evaluated in 1.15 < W < 2.60 GeV.

Q2 bin Total Back. Dilution Radiative PbPt Model Pol. Back.
8 6 0.5 2 2 6 0.7 0.8
9 7 0.5 2 3 6 0.9 0.9
10 10 0.8 3 4 9 1 1
11 8 0.5 2 3 7 1 1
12 8 0.4 2 3 7 1 1
13 9 0.4 3 3 8 2 1
14 9 0.4 3 4 8 2 1
15 10 0.4 3 6 8 2 1
16 11 0.4 3 7 8 2 2
17 11 0.3 3 7 8 2 2
18 12 0.3 3 7 8 2 2
19 11 0.3 3 8 8 2 2
20 12 0.4 3 8 8 3 2
21 13 0.4 3 9 8 3 3
22 14 0.4 4 10 8 3 3
23 13 0.4 3 9 8 3 4
24 15 0.4 4 10 8 3 4
25 21 1 6 12 15 5 5
26 16 0.5 5 11 10 4 5
27 14 0.4 4 9 9 3 4
28 13 0.4 4 8 9 3 4
29 11 0.3 4 7 8 2 3
30 8 0.2 2 5 5 1 2
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TABLE 43: Systematic errors σpercentsys (Q2) on A1 + ηA2 for the deuteron are listed
for 4 GeV data. The percentage values are calculated according to Eq. (105) and
evaluated in 1.15 < W < 2.60 GeV.

Q2 bin Total Back. Dilution Radiative PbPt Model Pol. Back.
13 15 0.9 3 3 14 2 1
14 10 0.6 2 2 9 1 1
15 11 0.5 2 2 10 1 1
16 12 0.5 2 3 11 2 1
17 11 0.4 2 3 10 2 1
18 9 0.4 2 3 8 2 1
19 12 0.5 2 4 11 2 1
20 12 0.6 2 4 11 2 1
21 10 0.4 2 4 9 2 1
22 13 0.5 2 5 11 2 2
23 12 0.4 2 5 10 2 2
24 14 0.5 2 6 12 3 2
25 14 0.5 2 6 12 3 2
26 15 0.5 3 7 12 3 3
27 15 0.5 3 7 13 3 3
28 16 0.5 3 7 13 3 3
29 16 0.5 4 6 13 3 3
30 16 0.5 4 6 13 3 3
31 16 0.5 4 6 14 3 3
32 14 0.4 3 5 12 2 3
33 12 0.3 3 4 11 2 2
34 11 0.2 3 4 10 2 2
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TABLE 44: Systematic errors σpercentsys (Q2) on A1 + ηA2 for the deuteron are listed
for 5 GeV data. The percentage values are calculated according to Eq. (105) and
evaluated in 1.15 < W < 2.60 GeV.

Q2 bin Total Back. Dilution Radiative PbPt Model Pol. Back.
19 20 1 2 3 19 2 0.9
20 25 1 2 4 24 2 1
21 18 2 2 3 18 2 1
22 19 1 1 3 18 2 1
23 18 2 1 4 18 2 1
24 20 2 2 5 20 3 2
25 21 1 3 5 20 3 2
26 22 1 3 5 21 3 2
27 21 1 3 5 20 3 2
28 20 1 3 6 19 3 3
29 21 1 3 6 20 3 3
30 20 1 4 6 19 3 3
31 22 1 4 6 21 3 4
32 21 1 3 5 20 3 4
33 23 1 4 5 22 2 4
34 22 0.9 3 4 21 2 3
35 20 0.6 3 4 19 2 3
36 18 0.4 2 3 17 1 2
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TABLE 45: Systematic errors on g1 deuteron for each Q2 bin as a percentage of the
statistical errors, as given in Eq. (105). The percentage values are evaluated in 1.15
< W < 2.60 GeV.

Q2 bin Total Back. Dilution Radiative PbPt Model Pol. Back.
6 18 0.05 8 5 15 4 2
7 11 0.03 4 4 9 2 1
8 9 0.04 2 4 8 2 1
9 11 0.1 2 5 9 2 1
10 11 0.4 3 5 9 3 1
11 11 0.3 2 5 9 2 1
12 12 0.3 3 5 10 3 2
13 11 0.3 3 5 9 3 2
14 11 0.4 3 5 9 3 1
15 10 0.4 3 6 8 3 1
16 17 0.5 3 7 15 4 2
17 12 0.4 3 9 8 4 2
18 13 0.3 2 10 7 5 2
19 16 0.3 3 13 8 7 2
20 16 0.3 3 14 7 7 2
21 16 0.4 2 14 7 7 2
22 16 0.5 2 14 8 7 2
23 16 0.6 2 13 8 8 2
24 17 0.6 2 15 8 9 3
25 18 0.6 2 16 9 10 3
26 20 0.6 2 17 9 12 3
27 18 0.6 2 15 10 10 3
28 17 0.6 3 11 12 7 3
29 17 0.7 3 9 13 5 3
30 17 0.7 3 9 14 4 3
31 19 0.8 3 9 16 4 4
32 19 0.7 3 9 16 4 4
33 22 0.9 3 9 20 4 3
34 21 0.8 3 7 19 4 3
35 20 0.7 3 6 19 3 3
36 19 0.5 4 5 18 3 2
37 18 0.3 4 4 17 3 1
38 7 0.08 3 1 6 1 0.4
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TABLE 46: Systematic errors on g1 deuteron forQ2 bins, as a percentage of statistical
errors, calculated according to Eq. (105). The percentage values are evaluated in
three different regions: Total (1.15 < W < 2.60 GeV); Region1 (1.15 < W < 1.30
GeV); Region2 (1.30 < W < 2.00 GeV); Region3 (2.00 < W < 2.50 GeV).

Q2 bin Total Region1 Region2 Region3
6 18 0 18 0
7 11 0 11 0
8 9 0 9 0
9 11 12 11 6
10 11 12 10 17
11 11 14 10 8
12 12 17 11 5
13 11 16 9 9
14 11 16 10 4
15 10 14 9 13
16 17 14 10 30
17 12 17 12 11
18 13 19 14 8
19 16 21 17 12
20 16 24 18 10
21 16 21 19 9
22 16 19 19 10
23 16 15 19 12
24 17 14 22 12
25 18 12 23 12
26 20 10 26 13
27 18 9 22 14
28 17 9 17 16
29 17 10 16 19
30 17 10 15 19
31 19 11 16 23
32 19 11 15 24
33 22 10 16 26
34 21 13 20 25
35 20 16 21 19
36 19 18 19 22
37 18 21 17 0
38 7 7 0 0
NQ2 Av. Total Av. Region1 Av. Region2 Av. Region3
33 15 14 16 15
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TABLE 47: W regions (in GeV) used for Γ1 calculation. Model was used where data
is not available.

bin Q2 model data model data model

10 0.049 1.08 - 1.14 1.15 - 1.59 1.60 - 2.99 - 3.00 - 7.10
11 0.059 1.08 - 1.14 1.15 - 1.59 1.60 - 2.99 - 3.00 - 7.74
12 0.070 1.08 - 1.14 1.15 - 1.59 1.60 - 1.84 1.85 - 1.99 2.00 - 8.45
13 0.084 1.08 - 1.14 1.15 - 1.79 1.80 - 2.99 - 3.00 - 9.23
14 0.101 1.08 - 1.14 1.15 - 1.79 1.80 - 2.99 - 3.00 - 10.10
15 0.120 1.08 - 1.14 1.15 - 1.83 1.84 - 2.99 - 3.00 - 11.00
16 0.144 1.08 - 1.14 1.15 - 1.83 1.84 - 2.99 - 3.00 - 12.00
17 0.171 1.08 - 1.14 1.15 - 2.19 2.20 - 2.99 - 3.00 - 13.10
18 0.205 1.08 - 1.14 1.15 - 2.19 2.20 - 2.99 - 3.00 - 14.30
19 0.244 1.08 - 1.14 1.15 - 2.19 2.20 - 2.39 2.40 - 2.59 2.60 - 15.60
20 0.292 1.08 - 1.14 1.15 - 2.19 2.20 - 2.99 - 3.00 - 17.10
21 0.348 1.08 - 1.14 1.15 - 2.24 2.25 - 2.99 - 3.00 - 18.70
22 0.416 1.08 - 1.14 1.15 - 2.59 2.60 - 2.99 - 3.00 - 20.40
23 0.496 1.08 - 1.14 1.15 - 2.59 2.60 - 2.99 - 3.00 - 22.30
24 0.592 1.08 - 1.14 1.15 - 2.59 2.60 - 2.99 - 3.00 - 24.30
25 0.707 1.08 - 1.14 1.15 - 2.79 2.80 - 2.99 - 3.00 - 26.60
26 0.844 1.08 - 1.14 1.15 - 2.89 2.90 - 2.99 - 3.00 - 29.00
27 1.01 1.08 - 1.14 1.15 - 2.89 2.90 - 2.99 - 3.00 - 31.80
28 1.2 1.08 - 1.14 1.15 - 2.89 2.90 - 2.99 - 3.00 - 34.60
29 1.44 1.08 - 1.14 1.15 - 2.89 2.90 - 2.99 - 3.00 - 37.90
30 1.71 1.08 - 1.14 1.15 - 2.89 2.90 - 2.99 - 3.00 - 41.30
31 2.05 1.08 - 1.14 1.15 - 2.79 2.80 - 2.99 - 3.00 - 45.30
32 2.44 1.08 - 1.14 1.15 - 2.59 2.60 - 2.99 - 3.00 - 49.40
33 2.92 1.08 - 1.14 1.15 - 2.59 2.60 - 2.99 - 3.00 - 54.00
34 3.48 1.08 - 1.14 1.15 - 2.49 2.50 - 2.99 - 3.00 - 59.00
35 4.16 1.08 - 1.14 1.15 - 2.29 2.30 - 2.99 - 3.00 - 64.50
36 4.96 1.08 - 1.14 1.15 - 1.99 2.00 - 2.99 - 3.00 - 70.40
37 5.92 1.08 - 1.14 1.15 - 1.59 1.60 - 2.99 - 3.00 - 76.90
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APPENDIX D

DEUTERON STRUCTURE FUNCTIONS

D.1 EXTRACTION OF NEUTRON INFORMATION FROM A

DEUTERON TARGET

One of our purposes is to extract neutron information from the deuteron and proton

data. In order to extract the nucleon structure function from a measurement on a

nucleus, we need to understand the effects of the nuclear medium on the nucleon

structure. Once we understand these effects, we can make the necessary corrections

on the deuteron structure function and extract the neutron information by using

deuteron and proton data. Moreover, by comparing our results to the available

neutron data from 3He targets [71], for example, we can justify our understanding

of the nuclear medium and its effects on the nucleon structure. The EG1b data

will make an important contribution to the neutron spin structure and reduce the

uncertainties substantially over a good kinematic range of x and Q2.

In the resonance region, for spin structure functions, the most important nuclear

effects are considered to be the Fermi motion and the depolarizing effect of the D-wave

[72]. The correction for the depolarizing effect of the D-wave can be approximated

by an overall factor (1 − 1.5wD) that describes the average polarization of nucleons

inside a fully polarized deuteron. Although this is the most important correction for

x < 0.7, the additional corrections are required, especially for larger x [73], the most

important of which being the Fermi motion. There are additional effects such as off-

shell mass effect and the EMC effect that should be considered. However, those are

found to be relatively small corrections [72]. In the following sections, we summarize

the corrections required to extract neutron information from deuteron and proton

data.

Fermi Motion

Bound nucleons are moving inside the nucleus, causing kinematic shifts and Doppler

broadening of peaks in the cross section. If we assume that the proton and neutron

spin structure functions have similar behavior in the resonance region, the positions

of the nucleon resonances should be the same for both nucleons. However, in case

of the deuteron, the resonance peaks may be smeared and shifted because of the
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Fermi motion of the nucleons. If one tries to extract the neutron structure functions

by subtracting the proton from the deuteron, the maximum of the proton structure

function may become the minimum of the neutron structure function. This turns

the Fermi smearing into an important effect to consider while extracting neutron

information from the deuteron and proton data.

Recently it was suggested by [74] that a convolution method can be used itera-

tively to take these effects into account and extract the neutron structure functions

from nuclear data. The method uses convoluted proton and neutron structure func-

tions (SFs) to model the deuteron and relies on the knowledge of the proton and

deuteron to iteratively extract the neutron SFs. A predefined input function for

the neutron is evolved iteratively until the function becomes stable. Currently, the

convolution only corrects for the Fermi motion and the D-state of the deuteron and

disregards other nuclear effects. Still, the method is suitable to incorporate other

corrections as they are modeled. It has been successfully tried on the unpolarized

structure functions. However, the convolution method is only well proven for func-

tions with no sign change. On the other hand, the spin structure function g1 has

several sign changes in the resonance region. This causes the iterative method to fail

in some kinematic regions. This mainly happens if one uses data with errors for the

proton and deuteron. Using parameterizations of the structure functions, instead,

makes the method more reliable. The results of the EG1b experiment, with both the

proton and the deuteron data, provides a perfect environment to test this method.

More information on this together with parameterizations of the world asymmetry

data are given in chapter III.

Off-Mass Shell Effects

The deuteron is made up of a proton and a neutron. But because of the negative

contribution coming from the binding energy to the overall mass of deuterium, Md =

Mp + Mn − 2.2 MeV, both nucleons cannot be on the mass shell at the same time.

Moreover, the nucleons will also have relativistic motion and their total energy should

be calculated by
√
M2

p + p2
p +

√
M2

n + p2
n � Md, therefore, the mass of a bound

nucleon is much smaller than that of a free one in this picture. Various corrections

for this off-shell effect have been proposed. It is included in the smearing prescription

of [74] up to 2nd order in the momenta.
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EMC Effect

This effect can be summarized as the observed dependence of the cross section per

nucleon on the nuclear medium. It was first observed by the EMC Collaboration

[43]. It is due to the distortion of the free-nucleon structure function by the nuclear

medium. The effect has a strong kinematical dependence being most pronounced

at large x > 0.5. However, currently we don’t have a reliable model of the EMC

effect in the deuteron, thus, this effect is not included into our method to extract

the neutron SF from the deuteron data. More information on the EMC effect can be

found in [7][75][76].

Effects of non-nucleonic states

Effects of nucleonic resonance states and pions (meson exchange currents) as part

of the structure of the deuteron should also be considered. According to the six

quark bag model of the deuteron, one should include direct correlations between

quarks and gluons in the proton and neutron. Finally, one could consider nuclear

shadowing, which is re-scattering of the lepton from both nucleons in the deuteron or

from the meson cloud within the nucleus. However, there is no universally accepted

quantitative model for the deuteron which corrects for these effects.
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