

Deeply Virtual Compton Scattering off ⁴He

CLAS-EG6 experiment

M. Hattawy, R. Dupré, M. Guidal

(i) Physics Motivations

(ii) Experimental Setup

(iii) Data Analysis

(iv) Results and Conclusions

Physics Motivations

Nucleon form factors, quark transverse spatial distributions.

Parton distribution functions, quark longitudinal momentum distributions. Generalized parton distributions (GPDs), correlated quark longitudinal momentum in transverse space. 1

DVCS Reaction

Hard part (perturbative, calculable in PQCD)

Factorization

Soft part (Non-perturbative, parameterized in terms of GPDs)

t : transfer momentum ξ : skewdness parameter x : longitudinal parton momentum ($x \neq x_B$) Q²: photon's virtuality

 $t = (p - p')^{2} = (q - q')^{2}$ $\xi = x_{B}/(2 - x_{B})$ $x_{B} = Q^{2}/2p.q$ $Q^{2} = -q^{2} = (k - k')^{2}$

 $GPD(x,\xi,t)$: the probability of picking up a parton with momentum $x+\xi$ and putting it back with a momentum x- ξ without breaking the nucleon.

EMC Effect

EMC (European Muon Collaboration) effect :

The structure function of the free nucleon \neq the structure function of the nucleon inside a nucleus.

- Possible explanations:
 - → Modifications of the nucleons themselves in the nuclear medium
 - → Effect of non-nucleonic degrees of freedom, e.g, pion cloud
- We want to measure possible nuclear modifications of the GPDs with respect to the free ones.

EMC effect region 0.2<x_B<0.7

DVCS off ⁴He

Our observable is the beam-spin asymmetry (A_{LU}) which is linearly sensitive to the GPDs. $A_{LU} = \frac{\alpha_0(\phi)\Im_A}{\alpha_1(\phi) + \alpha_2(\phi)\Re_A + \alpha_3(\phi)(\Re_A^2 + \Im_A^2)}$

Experimental Setup

Electron Selection (1)

- 1) Negative charge.
- 2) Minimum momentum cut (p > 500 MeV/c).
- 3) Geometrical cuts:
 - \rightarrow Electromagnetic Calorimeter (EC) cut.
 - \rightarrow Cherenkov Counters (CC) cut.
 - \rightarrow Inner Calorimeter(IC) cut and Drift Chambers (DC) cut.

electron XY projection of EC after uvw cuts

 $\phi_{e^{-}}$ vs. $\theta_{e^{-}}$ before CC fiducial cuts

XY electron projection of DC after IC and DC fid. cuts

Electron Selection (2)

4) Energy cuts.

- \rightarrow Minimum deposited energy in the inner side of the EC.
- \rightarrow Deposited energy momentum fraction.
- 5) Number of photoelectrons detected in Cherenkov Counters.

electron (EC_eo vs. EC_ei)

Proton Selection

$\Delta\beta$ vs p for positive particles

Helium Selection

- 1) One good electron is identified in CLAS.
- 2) Good track in RTPC.
 - \rightarrow Initiated close to the cathode (sdist).
 - \rightarrow Ended close to the anode (edist).
 - \rightarrow Positive curvature (r₀>0).
 - \rightarrow Readings from at least four different active pads.
 - $\rightarrow 0.5 < X^2 < 3.5$
- 3) The correspondance between electron's vertex and RTPC track's vertex cut.

Photon selection

Electromagnetic Calorimeter θ [15, 45]

EC fiducial cut as the electron.
β cut [0,93, 1,07].

Inner Calorimeter θ[4, 14]

Clean hot channels.
Inner Calorimeter fiducial edges cut.

⁴He Experimental DVCS Event Selection(1)

 \diamond One good electron in CLAS, one photon in the IC or the EC, and one good track in the RTPC. $\diamond E\gamma > 2 \text{ GeV}, W > 2 \text{ GeV/c}, (E_b-E_{e'})/E_b < 0.85 \text{ and } Q^2 > 1 \text{ GeV}^2.$

- ◊ Exclusivity cuts (3 sigma cuts):
 - In **BLUE**, DVCS events before all exclusivity cuts.
 - In shadowed BROWN, DVCS events which pass all the other exclusivity cuts except the quantity itself.

⁴He Experimental DVCS Event Selection(2)

 \diamond One good electron in CLAS, one photon in the IC or the EC, and one good track in the RTPC. $\diamond E\gamma > 2 \text{ GeV}, W > 2 \text{ GeV/c}, (E_b-E_{e'})/E_b < 0.85 \text{ and } Q^2 > 1 \text{ GeV}^2.$

♦ Exclusivity cuts (3 sigma cuts):

⁴He Simulated DVCS Event Selection

♦ Apply the same experimental selection cuts.

 \diamond One good electron in CLAS, one photon in the IC or the EC, and one good track in the RTPC. $\diamond E\gamma > 2 \text{ GeV}, W > 2 \text{ GeV/c}, (E_b-E_{e'})/E_b < 0.85 \text{ and } Q^2 > 1 \text{ GeV}^2.$

♦ Exclusivity cuts (3 sigma cuts):

Comparison between Simulated and Experimental $e^4He\gamma \dots (1)$

♦ Matching in terms of kinematics:

Comparison between Simulated and Experimental $e^4He\gamma$(2)

 \diamond In terms of the exclusive quantities:

θ(γ,X): Coherent channel [Degres]

Background Subtraction

 \diamond With our kinematics, the main background comes from the exclusive π^0 channel (e^4 He π^0 /ep π^0) in which one photon of the π^0 's photons is detected and passed the exclusivity cuts.

 \diamond We use the simulation to compute the contamination of π^0 to the DVCS channels.

♦ The procedures:

- \rightarrow Select the experimental e⁴Hen⁰/epn⁰ events.
- \rightarrow Generate and simulate e⁴Hey/epy events to define the exclusivity cuts on the DVCS events.
- \rightarrow Generate and simulate e⁴Hen⁰/epn⁰ events.
- \rightarrow Find the contamination ratio (R⁻ = e⁴Hen⁰(1 γ) / e⁴Hen⁰(2 γ)). This is performed in Q2, x_B, t bins.
- \rightarrow The number of experimental e⁴Hen⁰/epn⁰ events in which one photon is detected is proportional to the ratio R.
- \rightarrow Subtract this proportionality (function of phi, Q², x_B, t) from data.
- \rightarrow Extract the corrected Beam Spin Asymmetries.

Experimental e⁴Heπ⁰ Event Selection

♦ Select events with one good e, ⁴He and $\pi^{0}(\gamma\gamma)$ [ICIC, ICEC, ECEC] final state particles. ♦ Pass the cuts: $E_{\pi^{0}} > 2$ GeV, W > 2 GeV/c, $(E_{b}-E_{e'})/E_{b} < 0.85$ and $Q^{2} > 1$ GeV². ♦ Pass these 3 sigmas exclusivity cuts.

Simulated e⁴Hen⁰ Event Selection

◊ Select events with one good e, ⁴He and π⁰(γγ) [ICIC, ICEC, ECEC] final state particles. ◊ Pass the cuts: $E_{\pi 0} > 2$ GeV, W > 2 GeV/c , $(E_b - E_{e'})/E_b < 0.85$ and $Q^2 > 1$ GeV². ◊ Pass these 3 sigmas exclusivity cuts.

Comparison between Simulated and Experimental e⁴Heπ⁰

Coherent Contamination Ratio

Coherent Beam-Spin Asymmetries

$$A_{LU} = \frac{1}{P_B} \frac{N^+ - N^-}{N^+ + N^-}$$

N⁺/N⁻: Number of events with +/- helicity of e⁻. Beam polarization (P_B) = 83%.

 Φ_h : angle between the leptonic and the hadronic planes.

BLUE points: the raw asymmetries.

RED points: background subtracted asymmetries.

InCoherent Beam-Spin Asymmetries

Conclusion

Proton DVCS Analysis

Experimental epy Event Selection(1)

 \diamond One good electron in CLAS, one photon in the IC or the EC, and one good proton in CLAS. $\diamond E\gamma > 2 \text{ GeV}, W > 2 \text{ GeV/c}, (E_b-E_{e'})/E_b < 0.85 \text{ and } Q^2 > 1 \text{ GeV}^2.$

◊ Exclusivity cuts (3 sigma cuts):

Experimental epy Event Selection(2)

 \diamond One good electron in CLAS, one photon in the IC or the EC, and one good proton in CLAS. $\diamond E\gamma > 2 \text{ GeV}, W > 2 \text{ GeV/c}, (E_b-E_{e'})/E_b < 0.85 \text{ and } Q^2 > 1 \text{ GeV}^2.$

◊ Exclusivity cuts (3 sigma cuts):

Comparison between Simulated and Experimental $ep\gamma \dots (1)$

♦ Matching in terms of kinematics:

Comparison between Simulated and Experimental epy(2)

\diamond In terms of the exclusive quantities:

Experimental epπ⁰ Event Selection

 \diamond Select events with one good e, p and $\pi^{0}(\gamma\gamma)$ [ICIC, ICEC, ECEC] final state particles. \diamond Pass the cuts: $E_{\pi 0} > 2$ GeV, W > 2 GeV/c, $(E_{b}-E_{e'})/E_{b} < 0.85$ and $Q^{2} > 1$ GeV². \diamond Pass these 3 sigmas exclusivity cuts.

Simulated epn⁰ Event Selection

 \diamond Select events with one good e, p and $\pi^{0}(\gamma\gamma)$ [ICIC, ICEC, ECEC] final state particles. \diamond Pass the cuts: $E_{\pi0} > 2$ GeV, W > 2 GeV/c, $(E_{b}-E_{e'})/E_{b} < 0.85$ and $Q^{2} > 1$ GeV².

◊ Pass these 3 sigmas exclusivity cuts.

Comparison between Simulated and Experimental $ep\pi^0$

Contamination Ratio in the InCoherent Channel

InCoherent Contamination Ratio (t, Φ_h)

