

Deeply Virtual Compton Scattering off ⁴He

M. Hattawy

(On behalf of the CLAS collaboration)

QNP2015 Conference - Valparaíso, Chile - March 2-6, 2015

Physics Motivations

◊ Form factors:

- \rightarrow Contain information on the quarks transverse spatial distributions
- \rightarrow They are accessible via elastic scattering

◇ Parton distribution functions:

- \rightarrow Provide the quarks longitudinal momentum distributions
- \rightarrow Reachable via deep inelastic scattering

◊ Generalized parton distributions (GPDs):

- Contain information on:

- \rightarrow Quark/anti-quark correlations
- → Correlations between longitudinal momentum and transverse spatial position of partons
- Accessed via exclusive processes:
 - \rightarrow Deeply Virtual Compton Scattering (DVCS)
 - \rightarrow Deeply Virtual Meson Production (DVMP)

From the theoretical point of view, the **DVCS** is considered the cleanest way to access the GPDs

DVCS Reaction

Hard part (perturbative, calculable in PQCD)

- Factorization

Soft part (Non-perturbative, parameterized in terms of GPDs)

t : transfer momentum $t = (p - p')^2 = (q - q')^2$ ξ : skewdness parameter $\xi \simeq x_B/(2 - x_B)$ x : longitudinal parton momentum ($x \neq x_B$) $x_B = Q^2/2p.q$ Q²: photon's virtuality $Q^2 = -q^2 = (k - k')^2$

 \rightarrow GPD(x, ξ , t): the probability of picking up a parton with momentum x+ ξ and putting it back with a momentum x- ξ without breaking the nucleon.

 \rightarrow DVCS is sensitive to the Beam-Spin Asymmetry (BSA). It is our observable.

DVCS and Bethe-Heitler processes

♦ **Experimentally**, the **DVCS** is indistinguishable from Bethe-Heitler (BH) process. Therefore, the measured photon-production cross-section is:

- The cross-section is dominated by BH which is calculable using the elastic form factors
- **DVCS** signal is enhanced by the interferenece

 \Diamond For spin zero target and longitudinally polarized electron beam ($\lambda)$:

- \rightarrow The differential cross-section: $d\sigma \propto |\tau_{\rm BH}|^2 + (\tau_{\rm DVCS}^* \tau_{\rm BH} + \tau_{\rm BH}^* \tau_{\rm DVCS}) + |\tau_{\rm DVCS}|^2$
- \rightarrow The Coherent DVCS (SPIN ZERO \rightarrow ONE GPD IS NEEDED H_A(x, ξ , t)):

$$A_{LU} = \frac{\alpha_0(\phi) * \mathcal{H}_{Im}}{\alpha_1(\phi) + \alpha_2(\phi)\mathcal{H}_{Re} + \alpha_3(\phi)(\mathcal{H}_{Im} + \mathcal{H}_{Re})} = \frac{\sigma^+ - \sigma^-}{\sigma^+ - \sigma^-}$$
$$\mathcal{H}_{Re}(\xi, t) = \mathcal{P}\int_0^1 dx [H_A(x, \xi, t) - H_A(-x, \xi, t)] C^+(x, \xi)$$

$$\mathcal{H}_{Im}(\xi,t) = H_A(\xi,\xi,t) - H_A(-\xi,\xi,t)$$

DVCS off nuclei

Nuclear DVCS provides access to two channels:

$\Diamond \text{ Coherent DVCS: } e^{-}A \rightarrow e^{-}A \gamma$

- \rightarrow Study the partonic structure of the nucleus.
- \rightarrow One GPD is needed to parametrize the structure of the spinless nuclei (⁴He, ¹²C, ¹⁶O, ...).

\diamond InCoherent DVCS: e⁻A \rightarrow e⁻NX γ

- → The nucleus breaks and the DVCS takes place over a nucleon.
- \rightarrow Study the partonic structure of the bound nucleons (4 GPDs are needed to parametrize their structure).
- \rightarrow Study the medium modifications of the nucleons (EMC effect) in terms of GPDs.

Experimental Setup

PR-08-024 experiment, Hall B, JLab (Virginia, USA), 2009.

6

DVCS events selection

We select events which have:

♦ Coherent (InCoherent): Only one good electron, at least one photon and only one good ⁴He(p). ♦ $E\gamma > 2 \text{ GeV}$, W > 2 GeV/c, $(E_b-E_{e'})/E_b < 0.85$ and $Q^2 > 1 \text{ GeV}^2$.

◊ Exclusivity cuts (3 sigmas).

Counts

450 400 350

300

250 200

150

50

-0.5

0

- In **BLUE**, coherent events before all exclusivity cuts.
- In shadowed BROWN, coherent DVCS events which pass all the other exclusivity cuts except the quantity itself.

 $e^4He \gamma$: Missing E

0.5

1.5

[GeV]

Background Subtraction

 \diamond With our kinematics, the main background comes from the exclusive π^0 channel $(e({}^{4}He/p)\pi^{0})$ in which one photon of the π^{0} 's photons is detected and passed the DVCS exclusivity cuts.

 \diamond We use simulation to compute the contamination of π^0 to the DVCS channels.

$$\vec{N}_{DVCS/BH} = \vec{N}_{eHe\,\gamma}^{Exp.} - \vec{N}_{eHe\,\pi^{0}(1\,\gamma)}^{Exp.} = \vec{N}_{eHe\,\gamma}^{Exp.} - \left(N_{eHe\,\pi^{0}(1\,\gamma)}^{MC} / N_{eHe\,\pi^{0}(2\,\gamma)}^{MC}\right) * \vec{N}_{eHe\,\pi^{0}(2\,\gamma)}^{Exp.}$$

R $(1\gamma/2\gamma)$

Relative yield of e⁴Hen⁰

Relative contamination

\rightarrow In -t bins (integrated over φ_h , Q², x_B):

♦ Background yeild ratio ~ 2-4% (8-11%) in e^{-4} Heγ (e^{-} pγ) DVCS channel.

Coherent (e⁻[⁴He) beam-spin asymmetries

$$A_{LU} = \frac{1}{P_B} \frac{N^+ - N^-}{N^+ + N^-}$$

Beam polarization $(P_B) = 83\%$

 \rightarrow Probed coherent kinematical regions:

- Due to statistical constrains, we constructed 2D bins -t or x_B or Q^2 versus ϕ
- The A_{LU} signals are fitted with :

 $p_0*\!\sin\left(\mathbf{q}\right)\!\prime\!\left(1\!+\!p_1*\!\cos\left(\mathbf{q}\right)\right)$

• Statistical errors **ONLY** are shown in our points

 $\rightarrow A_{LU} @ 90^{\circ} vs. (<-t>/<xB>)$

- [1] LT: S. Liuti and S. K. Taneja. Phys. Rev., C72:032201, 2005.
- [2] GS: V. Guzey and M. Strikman. Phys. Rev., C68:015204, 2003.
- [3] HERMES: F. Ellinghaus, R. Shanidze, and J. Volmer. AIP Conf. Proc., 675:303–307, 2003.

Compton form factor (H_A) extraction

- We have "significant" trends with t and x_B as well.

InCoherent (e⁻ p) beam-spin asymmetries

- \diamond Probed kinematical regions: 0.05 < -t < 2.5 [GeV²] 1.0 < Q² < 4.5 [GeV²] 0.1 < x_{\rm B} < 5.5
- ◊ The black points are our measured asymmetries after the background subtraction in which:
 - 2D bins $(-t/x_B/Q^2)$ vs. Φ
 - Fitted with $p_0 * \sin(\phi) / (1 + p_1 * \cos(\phi))$
 - Statistical errors **ONLY** are shown in our points
- ◊ Theoretical predictions:
 - In -t @ x_B =0.132 and 0.238
 - In x_B @ -t= -0.095 and 0.326

[1] LT: S. Liuti and S. K. Taneja.Phys. Rev., C72:032201, 2005.
[2] HERMES: F. Ellinghaus, R. Shanidze, and J. Volmer. AIP Conf. Proc., 675:303–307, 2003.

EMC ratio

♦ Possible explanation of the EMC effect:

Modifications of the nucleons themselves in the nuclear medium

♦ We compared between our measured incoherent asymmetries (Black points) and the free proton asymmetries measured in e1dvcs2 experiment (Red Points).

At small -t, the bound proton show lower asymmetry than the free one.
At high -t, the two protons show the same trend.

Conclusions

- ◊ The exclusive DVCS off ⁴He were measured for the first time with our experiment
- ◊ Preliminary asymmetries were extracted and good agreement With the theoretical predictions have been observed
- Vith our available statistics, the bounded proton has shown a different trend comparing to the free one
- ♦ Perspectives:
 - \rightarrow Final results soon
 - \rightarrow Proposing a new ⁴He DVCS experiment with JLab upgrade.

Thanks for your attention