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Chapter 1

Introduction

1.1 DVCS off Helium-4

Nuclear targets provide access to the measurement of two DVCS channels: the coherent and
the incoherent. In the coherent channel, the target nucleus remains intact and recoils as a whole
while emitting a real photon (eA → e′A′γ). This process allows to measure the nuclear GPDs
of the target, which contain information on the partons correlations and the nuclear forces in
the target [1, 2]. In the incoherent channel, the nucleus breaks up and the DVCS takes place on
a bound nucleon that emits the final photon (eA → e′N′γ X). The latter allows to measure the
GPDs of the bound nucleons and study the medium modifications of the nucleons in the nuclear
medium. Figure 1.1 shows the diagrams of the two DVCS channels.

Figure 1.1: The leading twist handbag diagrams of the two DVCS channels from a nuclear target,
coherent channel (on the left) and incoherent channel (on the right).

The GPDs depend on three variables: x, ξ and t. x + ξ is the nucleon’s longitudinal
momentum fraction carried by the struck quark, 2ξ is the longitudinal momentum fraction
of the momentum transfer ∆ (= p′ − p), and t (=∆2) is the squared momentum transfer
between the initial and the final states of the hadron target. Experimentally, only ξ and t are
measurable in the DVCS reaction. At twist-2 order, ξ can be calculated as xB/(2− xB), where
xB is the Bjorken variable (= Q2/(2MN(E − E′) with Q2 is the vertuality of the exchanged
photon, MN is the mass of the nucleon and E(E′) is the energy of the incident (scattered) electron.

The number of GPDs needed to parametrize the partonic structure of a nucleus depends
on the different configurations between the spin of the nucleus and the helicity direction of the
struck quark. In principle, for a target of spin s, the number of the chiral-even GPDs is equal
to (2s + 1)2 for each quark flavor. For instance, at leading twist level, nine chiral-even GPDs are
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required to parametrize the partonic structure of the deuteron, because it has a spin one [3, 5].
This makes studying this nucleus a non-trivial task. The DVCS off spinless nuclear targets, such
as 4He, 12C and 16O, is simpler to study as only one GPD (HA(x, ξ, t)) arises at leading twist to
parametrize their partonic structure.

Nuclear DVCS provides a quantitative information on the nuclear medium effects, the quark
confinement size of the bound nucleons, see figure 1.2. The Fourier transform of the nucleon
GPDs over the momentum transfer ∆ gives the transverse separation (b′) between quarks in the
nucleon, while the transform of the nuclear GPD (HA(x, ξ, t)) gives the transverse separation (b)
between the quarks in the nucleus. Knowing these two separations, one can access the transverse
separation (β = b− b′) between the nucleons in a nucleus [2].

Figure 1.2: The spatial coordinates of quarks in a nucleus. See main text for definition of the
variables. The figure is from [6].

The 4He nucleus shows a clear EMC effect. This nucleus is characterized by its spin-zero, a
high density and it is a well-known few-body system. These aspects make the 4He nucleus an
ideal target to be considered for the understanding of the nuclear effects at the partonic level.

In principle, the 4He GPD HA(x, ξ, t) characterized by:

• The universality of HA: the HA describes the partonic structure of the 4He in a DVCS
reaction the same way as in a DVMP reaction.

• In the forward limit (t → 0), HA is reduced to the usual PDF of 4He that is accessible via
DIS.

• HA can be decomposed into a polynomial in ξ.

• The first moment of HA is the 4He elastic electromagnetic form factor FA(t), such as:

∑
q

∫ 1

−1
dx Hq

A(x, ξ, t) = FA(t), (1.1)

where the sum runs over all the quark flavors.
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• The second moment of Hq
A(x, ξ, t) reads

∫ 1

−1
dx xHq

A(x, ξ, t) = Mq/A
2 (t) +

4
5

ξ2dq/A
2 (t) (1.2)

where the first term of the right-hand side represents the momentum fraction carried by
each quark flavor q, and the second term is encoding information about the forces experi-
enced by partons inside the nuclei [1].

• HA is not directly measured from experiment, but we measure its corresponding Compton
form factor HA.

The 4He DVCS amplitude can be expressed as [3]:

TDVCS ∝ ∑
q

e2
qP
∫ 1

−1
dx
(

1
x− ξ

+
1

x + ξ

)
Hq

A(x, ξ, t)− iπ ∑
q

(
e2

q
[
Hq

A(ξ, ξ, t)− Hq
A(−ξ, ξ, t)

])
,

(1.3)
where the first term on the right-hand side stands for the real part of the CFF HA, while the
second term for the imaginary part of HA.

The coherent DVCS amplitude is enhanced through the interference with the BH process, that
is calculable from the well-known elastic FF. Figure 1.3 shows the world measurements of the
4He FA(t) along with theoretical calculations. Following the FA(t) parametrization by R. Frosch
and his collaborators [7] (valid at the small values of −t which are of interest in this work), figure
1.4 shows the calculated BH as a function of the azimuthal angle between the leptonic and the
hadronic planes (φ), using a 6 GeV electron beam on a 4He target.

The experimentally measured e4He → e4Heγ cross section can be decomposed into BH,
DVCS, and interference terms. The differential cross section can be written like in Appendix
A, equation A.1. By generalizing the BMK model [3], the nuclear BH, DVCS and interference
scattering amplitudes can be decomposed into a finite series of Fourier harmonics as can be
found in Appendix A, equations A.2, A.3 and A.4.

1.1.1 Beam-spin asymmetry

It is convenient to use the beam-spin asymmetry as DVCS observable because most of the
experimental normalization and acceptance issues cancel out in an asymmetry ratio. The beam-
spin asymmetry is measured using a polarized lepton beam on an unpolarized target (U). JLab
provides a longitudinally (L) polarized electron beam, PB ≈ 85 %. It is defined as:

ALU =
d5σ+ − d5σ−

d5σ+ + d5σ−
. (1.4)

where d5σ+(d5σ−) is the DVCS differential cross section for a positive (negative) beam helicity.

At leading twist, the beam-spin asymmetry (ALU) with the two opposite helicities of a
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Figure 1.3: 4He charge form factor measure-
ments at Stanford, SLAC, Orsay, Mainz and
JLab Hall A compared with theoretical cal-
culations. The figure is from [8].

Figure 1.4: The calculated BH cross section
as a function of φ on a 4He target at three val-
ues of xB and fixed values of Q2 and t. (t = -
0.1 GeV2/c2 corresponds to Q2 ≈ 2.57 fm−2

on figure 1.3).

longitudinally-polarized electron beam (L) on a spin-zero target (U) can be written as:

ALU =
xA(1 + ε2)2

y
sINT

1 sin(φ)
/[ n=2

∑
n=0

cBH
n cos (nφ) + (1.5)

x2
At(1 + ε2)2

Q2 P1(φ)P2(φ) cDVCS
0 +

xA(1 + ε2)2

y

n=1

∑
n=0

cINT
n cos (nφ)

]
.

where P1(φ) and P2(φ) are the Bethe-Heitler propagators. The factors: cBH
0,1,2, cDVCS

0 , cINT
0,1

and sINT
1 are the Fourier coefficients of the BH, the DVCS and the interference amplitudes for a

spin-zero target [3]. The explicit expressions of these coefficients can be found in Appendix A.

1.1.2 Theoretical predictions

On-shell calculations

The nuclear GPD HA can be described as the sum of the individual nucleons’ GPDs. In
the model based on the impulse approximation of V. Guzey et al. [10, 11], a nucleus is assumed
to consist of non-relativistic non-interacting nucleons, and these nucleons interact independently
with the probe. Assuming that the nucleon GPDs H and E are the dominant GPDs in the
unpolarized target scattering case, the nuclear GPD HA for each quark flavor q can be written as:

Hq
A(xA, ξA, t) =

dxN

dxA

[
Z
(

Hq
p(xN , ξN , t) +

t
4M2 Eq

p(xN , ξN , t)
)

(1.6)

+ (A− Z)
(

Hq
n(xN , ξN , t) +

t
4M2 Eq

n(xN , ξN , t)
)]

FA(t),
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where the factor dxN/dxA is the Jacobian for the transformation of x from the nucleonic xN to
the nuclear xA. It is equal to A(2− xA)/(2− xB) with xA = xB/A. ξA is defined as xA/(2− xA)
and ξN is equal to xB/(2− xB). For free nucleons, the GPDs are constructed using the double
distributions ansatz [12]. In this approximation, the GPD H with its evolution in Q2, can be
written as:

Hq(x, ξ, t, Q2) =
∫ 1

0
dβ
∫ 1+|β|

−1+|β|
dαδ(β + αξ − x)π(β, α)β−α′(1−β)tqν(β, Q2), (1.7)

where the parameters α and β are new variables that link x and ξ linearly as x = β + αξ, qν is the
valence unpolarized PDF and the profile function π(β, α) takes the form

π(β, α) =
3
4

(1− β)2 − α2

(1− β)3 . (1.8)

The t-dependence of the GPD is introduced through Regge ansatz [13], with the slope α′ equal to
1.105 GeV−2 that allows to recover the ordinary form factors of the nucleons.

This model enables to link the nuclear CFFs to the ones of the nucleons. However, it neglects
the medium modifications and the binding effects between the nucleons in a nucleus. To take
into account the nuclear modifications, the bound nucleons can be assumed to be modified in
proportion to the corresponding bound nucleon elastic form factors [14]. That is, the GPD H of
the bound proton (Hq/p∗) can be written as:

Hq/p∗(x, ξ, t, Q2) =
Fp∗

1

Fp
1

Hq/p(x, ξ, t, Q2), (1.9)

where Fp
1 (Fp∗

1 ) is the Dirac form factor of the free (bound) proton. The bound nucleon form factor
is calculated using the Quark-Meson Coupling (QMC) model [15], that predicts a suppression as
the nuclear density increases. As a result of these calculations, figure 1.5 shows the ratio of the
bound (incoherent DVCS channel off 4He) to free proton beam-spin asymmetry (ALU), at φ = 90◦,
as a function of xB, using a 6-GeV longitudinally-polarized electron beam at Q2= 2 GeV2/c2 and
two values of the transfer momentum t. This ratio represents a generalization of the EMC effect,
for t greater than zero. This model predicts an enhancement of the bound-proton beam-spin
asymmetry, which increases with t.

Off-shell calculations

Another model for nuclear GPDs in the impulse approximation uses the nuclear spectral
function. For a spin-zero nucleus, the GPD HA can be written as [2]:

HA(x, ζ, t) = ∑
N

∫ d2P⊥dY
2(2π)3

1
A−Y

ρA(P2, P′2)A (1.10)

×
√

Y− ζ

Y

[
HN

OFF(
x
Y

,
ζ

Y
, P2, t)− 1

4
(ζ/Y)2

1− ζ/Y
EN

OFF(
x
Y

,
ζ

Y
, P2, t)

]
where P and P′ are the incoming and outgoing nucleons three-momenta, Y is a dynamical variable
defined as y+Aζ

1+ζ , A = (Y− ζ/2)(
√

Y(Y− ζ)) is a normalization factor with ζ = 2ξ
1+ξ/A , ρA(P2, P′2)
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Figure 1.5: The theoretical predictions by V. Guzey [14] for the "generalized" EMC effect in terms
of the beam-spin asymmetry ratio between the bound proton in 4He and the free proton as a
function of Björken variable xB. The calculations are performed at two values of −t, 0.2 and 0.4
GeV2/c2, with a 6 GeV electron beam and Q2 = 2 GeV2/c2.

is the off-forward nuclear spectral function accounting for all configurations of the final nuclear
system and the binding effects between the nucleons. In a non-relativistic approximation, ρA is
defined as [16]:

ρA(P2, P′2) = 2πMA

∫
dP P Φ(P) Φ(P′) (1.11)

with Φ the nuclear wave function in momentum space. The off-forward nucleon GPDs, HN
OFF

and EN
OFF, are characterized by the off-shellness which is linked to P2. One recovers the free

nucleon GPDs by disregarding this off-shellness.

The nuclear effects can be expressed with the ratio between the nuclear and the nucleon GPDs.
This ratio becomes equal to the ordinary EMC ratio in the forward limit (t = 0). As the nuclear
form factor of the 4He has a steeper drop in t than the nucleonic one, it is more convenient to
define the ratio between normalized GPDs as:

RA(x, ξ, t) =
HA(x, ξ, t)/FA(t)
Hp(x, ξ, t)/F1

p(t)
(1.12)

where F1
p(t) is the Dirac form factor of the proton. Figure 1.6 shows the EMC ratios measured

via DIS on 4He compared to theoretical calculations. One can see that the latter calculations
by S. Liuti and K. Taneja describe the EMC effect differently than the first scenario due to the
off-shell effects of the nucleons associated in their calculation.

The nuclear effects can be also viewed as the beam-spin asymmetry ratio ( AIncoh
LU

Ap
LU

) between

the incoherent proton and the free proton. Figure 1.7 shows the predicted EMC effect in 4He

in terms of AIncoh
LU

Ap
LU

as a function of xB. The calculated ratio appears to be very sensitive on t,
which encodes the information on the transverse degrees of freedom of the partons in the nucleon.
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Figure 1.6: The EMC effect in 4He. The data
points are the 4He EMC ratios [17]. The black
dotted and solid curves are theoretical cal-
culations based on a binding and a diquark
model respectively, at −t= 0.1 GeV2/c2. The
blue curve shows the theoretical calculation
at the forward limit by Liuti and Taneja [2].

Figure 1.7: The theoretical calculations by
S. Liuti and K. Taneja [2] of the beam-spin
asymmetry ratio between the bound proton,
in 4He, and the free proton. The ratio is plot-
ted as a function of x at three different values
of −t: 0, 0.095, and 0.329 GeV2/c2.

We conclude that nuclear DVCS is a promising field that can give more details about the
nature of the nuclear forces through the study of the nuclear GPDs, and through the study of the
modifications of the nucleons’ GPDs in nuclei.

1.1.3 Nuclear DVCS measurements

The first nuclear DVCS experiments were carried out by the HERMES collaboration [18]. In
these measurements, longitudinally-polarized electron and positron beams at energies equal to
27.6 GeV were scattered onto fixed nuclear targets (hydrogen, helium-4, nitrogen, neon, krypton
and xenon) to study the DVCS reaction. The HERMES spectrometer did not detect the nuclear
recoils. However, the exclusivity of the selected DVCS events was approximately ensured by
a cut on the missing mass of the final state configuration eγX. The separation between the
coherent and the incoherent DVCS channels was made with a cut on t: the coherent channel is
assumed to dominate the low t-region, while the higher t-region is assumed to be dominated by
the incoherent channel on the protons and the neutrons. Figure 1.8 shows the sin(φ) amplitude
of the beam-spin asymmetries off the different targets in t-bins measured by HERMES. These
asymmetries are further separated into coherent and incoherent asymmetries. Figure 1.9 shows
the mass dependence of the sin(φ) amplitude of the coherent and the incoherent beam-spin
asymmetries integrated over all the data sample for each target type.

The HERMES inclusive measurements of the nuclear beam-spin asymmetries clearly suffer
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Figure 1.8: The t-dependence of the sin(φ) amplitude of the beam-spin asymmetries measured
by HERMES on different nuclear targets. The error bars show only the statistical uncertainties,
while the systematic uncertainties are indicated by the bands on each plot. [18].

Figure 1.9: The nuclear-mass dependence of the sin(φ) amplitude of the beam-spin asymmetries
for the coherent (upper panel) and the incoherent (lower panel) data samples. The values of tcoh
and tincoh for each nuclear target were determined from Monte-Carlo simulations [18].

from a lack of statistics for a precise investigation of their physics content. Within the given un-
certainties, their nuclear beam-spin asymmetries have shown neither enhancement, nor a nuclear-
mass dependence.
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1.2 EG6 experimental setup

The experiment described in this note has been carried out in the Hall B of the Thomas Jefferson
National Accelerator Facility (JLab), Virginia, USA. Hall B houses the CEBAF Large Acceptance
Spectrometer (CLAS). Our experiment was performed in 2009 with a longitudinally-polarized
electron beam of 6.064 GeV scattering onto a 6 atm gaseous 4He target to study the nuclear
medium modifications of parton distributions using the DVCS off the target.

1.2.1 CLAS detector

To ensure the exclusivity of our reaction, the basic setup of CLAS was upgraded with a Radial
Time Projection Chamber (RTPC) to detect the low-energy recoil nuclei, an additional calorimeter
(IC) to detect the energetic forward-emitted real photons and a solenoid magnet to minimize the
effects of Møller electrons. In the following subsections, we rapidly present the sub-detectors
previously used by the collaboration, the RTPC design and calibration are detailed in the next
chapter.

1.2.2 Inner calorimeter

In the basic setup of CLAS, the photons are detected by the forward electromagnetic calorimeters
(EC) which cover polar angles from 8◦ to 45◦. With a 6 GeV electron beam, a large part of the
DVCS photons are produced at polar angles below 15◦, where the acceptance of the EC is small.
In the CLAS-E1DVCS experiment (2005), CLAS was upgraded with the addition of an Inner
Calorimeter (IC). This calorimeter covers completely the polar angles between 5◦ and 15◦. Figure
1.10 shows a schematic plot of our experimental setup. The front face of the IC is facing the
downstream side of the Radial TPC (RTPC) and placed at 16 cm from the center of CLAS.

The IC is constructed from 424 lead-tungstate (PbWO4) crystals. Each crystal is 16 cm long
(corresponding to 17 radiation lengths) with a 1.33 × 1.33 cm2 front surface and a 1.6 × 1.6 cm2

back surface. The energy resolution is around 3% for photon energies between 2 GeV and 5 GeV
and the angular resolution is between 3 to 5 mrad for the same energy range [24].

1.2.3 Solenoid

At occupancies greater than 4%, the efficiency of the drift chambers starts to drop and the
resolution gets worse. The first region of the DCs (R1) has a higher occupancy than the other two
regions (R2 and R3), mostly due to noise. This noise mainly comes from the Møller electrons,
which are low-energy electrons produced in the scattering of the electron beam on the target’s
electrons. To reduce the effect of the noise, CLAS was upgraded by adding a solenoid that
surrounds the target. The magnet provides a nominal field of 4.5 T at the center of the target.
This solenoid deflects the produced Møller electrons to very forward angles preventing them
from arriving to the drift chamber, the IC or the RTPC. Figure 1.11 shows a GEANT3 simulation
of the Møller electrons tracks without applying the solenoid field (left), and how these electrons
are bent to low polar angles, less than 4◦, when the solenoid field is applied.

1.2.4 Run conditions

Table 1.1 summarizes the different beam energies used during the experimental run CLAS-EG6
with the details about the beam, the torus, and the solenoid currents.
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Figure 1.10: The CLAS-EG6 experimental setup in the y-z plane. The basic apparatus of CLAS is
shown in the right top plot, a zoom on the IC is shown on the bottom plot, and a photo of the
RTPC and the target are shown in the left top plot. The RTPC is surrounded by a solenoid (in
blue).
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Figure 1.11: The tracks of the produced Møller electrons (in red) without applying the solenoid
field (left) and with it (right) [24].

beam energy [GeV] Beam current [nA] Torus current [A] Solenoid current [A]
1.204 150 2100 450
5.7 100 1900 450
6.064 120-150 2100 450
1.269 100 1900 450

Table 1.1: The different beam energies used during the experimental run period CLAS-EG6 with
the currents in the beam, torus, and the solenoid.





Chapter 2

Radial time projection chamber

2.1 The EG6 RTPC

At 6 GeV incident electron beam energy, the recoil 4He nuclei from the coherent DVCS channel,
have an average momentum around 200 MeV/c. CLAS cannot detect such low energy particles,
for exemple protons are detected with a threshold of about 250 MeV/c, which will be even worse
for helium. In order to detect such low-energy recoils a Radial TPC (RTPC), similar to the one
used during the BoNuS run [25], was added to CLAS. In 2009, the CLAS-EG6 group [9] has
built this RTPC, figure 2.1 shows a close photo of the RTPC, while figure 2.2 shows a schematic
drawing of its internal structure. It is a 200 mm-long and 150 mm-diameter TPC, composed of
two electronically separated modules, each covering about 150◦ of the azimuthal angle. The RTPC
tracks the charged particles through the ionization centers they leave in the gas-filled detection
volume. Then, the ionized electrons drift under the effect of an electric field and are amplified by
a gas electron multiplier system before to be detected on collection pads.

2.1.1 Design

The RTPC has the following substructure, from the beam axis to the exterior:

• The target extends along the RTPC’s central z-axis, with a diameter of 6 mm. It is enclosed
in a 27-µm-thick Kapton wall.

• The first gas gap extends from 3 mm to 20 mm radial distances. It is filled with 4He gas
at one atmospheric pressure. This region is swarmed with Møller electrons induced by
the beam, but filling this region with a light gas like 4He at low pressure minimizes their
secondary interactions, while the magnetic field of the solenoid keeps them away from the
sensitive drift region. This gap is surrounded by a grounded window made of 4-µm-thick
aluminized mylar.

• The second gas gap extends from 20 mm to 30 mm radial distances and is filled with a gas
mixture of 80% Neon (Ne) and 20% Dimethyl Ether (DME: C2H6O). This drift gas fills all
the following gaps up to the external shell.

• The cathode foil, which is made of 4-µm-thick aluminized mylar, surrounds the second gas
gap. It is connected to a voltage of 4.3 kV to generate an electric field in the drift region.

• The drift region is filled with the Ne-DME gas mixture. It extends from the cathode, 30 mm
from the beam line, to the first gas electron multiplier layer, 60 mm from the beam line.

• The amplification system is composed of three Gas Electron Multiplier (GEM) layers located
at radii of 60 mm, 63 mm, and 66 mm.

• The electron collection system has an internal radius of 69 mm and collects the charges. The
data are then pre-amplified and transmitted to the data acquisition system.
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Figure 2.1: A view of the RTPC before inser-
tion into the solenoid. The incident electron
beam comes from the left.

Figure 2.2: A cross section of the RTPC taken
on a plane perpendicular to the beam line,
with a typical 4He track crossing the drift
volume.

The Ne-DME gas mixture has been chosen as the drift gas because of its low-diffusion
characteristics and small Lorentz angles (the angles between the drift direction of electrons
under the influence of magnetic field and the direction of the electric field). These characteristics
minimize the changes in the drift velocity of the ionization electrons [26].

The GEMs amplify the ionized electrons to produce measurable signals. Figure 2.3 shows a
microscopic photo of a GEM. It is made from an insulator (Kapton) sandwiched between two
copper layers. The mesh of each GEM layer is chemically etched with 50-µm-diameter holes in
double-conical cross section shapes, as can be seen from the schematic plot on the right.
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Figure 2.3: On the left: A microscopic image of a GEM shows the amplification holes, and the two
copper layers, separated by a Kapton insulator. This figure is from [27]. On the right: Schematic
of the hole structure in the GEMs with the electric field lines (solid red) and the equipotentials
(dashed blue). This figure is from [28].

The electrons amplification is achieved through the holes via the strong electric field, that
is generated by a 400-V potential difference between the two copper layers. Such a strong
field leads to high ionization of the initial electrons and therefore amplification of the signals.
Furthermore, an additional potential difference of 150 V is set between each two successive GEM
layers to push the amplified electrons towards the readout board. In this configuration, the gain
of each GEM layer is of the order of 100.

The RTPC electron collection system has 3200 readout pads. Each module of the RTPC has
40 rows and 40 columns of readout pads, each is 5 mm long and 4.45 mm wide. Each group of
16 pads is connected to a pre-amplifier before the recorded signals are carried to the acquisition
electronics. There are 20 rows and 5 columns of pre-amplifiers per module. This readout system
records the charge information in time bins, in which the charge is measured in Analog-to-Digital-
Converter (ADC) units, while the time is recorded in Time-to-Digital-Converter (TDC) units, in
which each TDC is equal to 114 ns. This measurement indicating the time taken by the electrons
to drift from the ionization point to the readout board.

2.1.2 Working principle

When a charged particle traverses a gas, it ionizes the gas-atoms along its trajectory. In a
TPC, the electrons released in the ionization drift towards the readout board under the effect
of an applied electric field. The drift velocity depends on the gas mixture, and on the electric
(~E) and magnetic (~B) fields. The recorded time of the electrons provides information on how far
the initial ionizations happened in the drift region, leading to reconstruct the original points of
ionization, while the recorded ADCs give the deposited energy.

In our TPC the cathode and the anode are two cylinders. Thus, the generated ~E field
in the drift region has a purely radial components, perpendicular to the beam line, with a
magnitude around 500 V/cm. However, the two-cylinders configuration produces small gradient
components at the sides of the RTPC. This issue was solved by installing field cages at the
ends of the RTPC to keep a regular ~E field. These caused some high voltage issues and were
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Figure 2.4: The solenoid magnetic field vectors in the RTPC, shown in the r − z plane, where r
is the radial distance from the central axis and z represents the longitudinal distance along the
RTPC.

disconnected during the experiment, partly justifying the time dependent calibration described
below.

The ~B field is generated by the solenoid. Figure 2.4 shows the magnetic field vectors in
the different regions of the RTPC. The presence of the magnetic field enables us to deduce the
momentum of a charged particle from the curvature of its track and the known magnetic field.

2.1.3 Track reconstruction

In order to reconstruct tracks we must first select the good hits. The first step is the rejection
of out-of-time hits and the noise reduction, as will be explained in section 2.2.4. The second step
is the spatial reconstruction of the hits, using the extracted drift speed and drift paths. For each
registered hit, the position of the initial ionization is obtained from the recorded time (TDC) and
from the position of its pad. In the third step, the reconstructed nearby hits are linked together
in chains. The maximum distance between two adjacent hits must be less than 10.5 mm to chain
them. Then, the number of hits per chain is required to be greater than 10 hits in order to proceed
to the fitting step.

A fit to a chain of hits is performed in two iterations. In the first iteration, the hits of the
chain are fitted with a helix. The helix fit is based on a circle fit in the x − y plane followed
by a linear fit in the s − z plane for the hits of the chain, where s =

√
x2 + y2. In the second

iteration, the residual between the fit and each hit is calculated. If the hit’s residual is greater
than 5 mm, the hit is excluded from the chain. Then the hits are re-fitted with the same previous
helix fit giving five final parameters for each track’s chain. From these five parameters, one can
reconstruct all the parameters of a track. For example, one can calculate the momentum from
the known longitudinal magnetic field (~Bz), the radius of curvature of the track (r0) and the polar
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angle (θ), like:

ptot =
√

p2
‖ + p2

⊥, (2.1)

with p⊥ = 0.3 · q · Bz · |r0|and p‖ = p⊥/tan(θ),

where p is in GeV/c unit, q is the elementary charge, Bz is in Tesla (T) and r0 is in meters (m).
For example, In a magnetic field of 4.5 T, the recoil 4He nuclei from DVCS (elastic) reaction have
kinetic energies in the range [10, 25] ([17, 35]) MeV, from momenta of [260, 450] ([360, 550]) MeV
and r0 [70, 150] ([130,180]) mm.

2.2 RTPC calibration

Reconstructing a trajectory from the recorded time information of the electrons requires a good
knowledge of their drift speed and drift paths. Also, the gains of the readout pads are required
to calculate dE

dx from the recorded ADCs. The drift paths and the gain calibration of the RTPC
require well identified events, so we decided to use elastic scattering (e4He → e4He). We had
specific calibration runs with 1-pass beam energies of 1.024 and 1.269 GeV in order to enhance
the cross section of the elastic process at large angles, which is highly suppressed at higher beam
energy.

A GEANT4 simulation for the RTPC has been developed to help reproduce these events in
order to properly extract the drift paths and the gains. Their extractions are based on comparing
the experimentally identified 4He elastic tracks to the GEANT4 simulated ones. Indeed, the
kinematics of each elastic 4He can be calculated from the electron measured in CLAS and then
simulated in GEANT4. The output of the simulation is then compared with the measured signals
to determine the drift paths.

This process is iterative since good tracks need to be identified at the beginning of the process.
For this analysis, we started from a MAGBOLTZ calibration, which was then improved with the
method described above with several iterations. In particular, changes in the alignment of the
RTPC with respect to the beamline, detailed in CLAS-NOTE [46]. In the following subsections,
we present the initial selection of the RTPC tracks and elastic events for the last iteration of our
calibration process. It is then followed by details on the techniques of calibration.

2.2.1 Event selection

Figure 2.5 shows a drawing of a segment of the RTPC, where a 4He track (in green) crosses the
volume of the RTPC, producing a chain of ionization points within the drift gas. The released
electrons follow the drift paths (in black) towards the readout board under the effect of the
electromagnetic field between the anode and the cathode. The electrons released close to the
cathode take the maximum drift time (TDCmax) to reach the readout pads, while the electrons
released close to the anode take the minimum time (TDCmin = 15 the trigger time), also called
time offset, which is identical for all readout channels. In our convention, the distance between
the first ionization point in the chain and the cathode is labelled as sdist, while the distance
between the last point and the anode is labelled as edist.

Because the two modules of the RTPC are electronically separated, we will sometimes show
their distributions separately. In our angular convention, the right module of the RTPC covers
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Figure 2.5: Schematic of a segment of the RTPC in a plane perpendicular to the beam line, with a
4He track (in green) crossing the volume. See the text for description of the various elements and
notations.

the azimuthal angles between 90◦ and 270◦, while the left-side module covers the rest of the
azimuthal angles.

2.2.1.1 RTPC good track requirements

A good RTPC track passes the following requirements:

• The number of active pads in the track is greater than 3.

• We apply a cut on the vertex position in z of the reconstructed tracks to insure it is in the
RTPC volume, i.e. z ∈ [-80,80] mm, as illustrated in figure 2.6.

• We request a positive radius of curvature (r0 > 0): the 4He is a positively charged nucleus
and the reconstructed track in the RTPC must have positive radius of curvature. In other
words, it travels in a clockwise direction if one looks into the electron beam. The curvature
distribution of the collected RTPC tracks is shown in figure 2.7.

• We check the quality of the helix fit with a χ2 cut (< 3.5). The quality of the fit (χ2) is defined
as:

χ2 =

(
DOCA

σr

)2

+
Npts

∑
i=1

(
rpt

i − rhelix
i

σr

)2

+

(
φ

pt
i − φhelix

i
σφ

)2

+

(
zpt

i − zhelix
i

σz

)2

Npts − 4
(2.2)

where DOCA
σr

is the beam-spot constraint, rpt
i , φ

pt
i , zpt

i are the radial, azimuthal, longitudinal
coordinates of each reconstructed hit "i". (rhelix

i , φhelix
i , zhelix

i ) is the point on the helix fit that
is closest to the reconstructed hit i, the resolutions are (σr, σφ, σz) = (0.53 mm, 2◦, 1.2 mm).
Npts is the total number of the hits in the chain. Figure 2.8 shows the χ2 distributions for
the positive tracks which originate within the RTPC.

• sdist (∈ [-2.0,2.0] mm) and edist (∈ [-1,5] mm ) cuts: the cuts are applied to ensure that a
track is on time, i.e. that the first ionization point is close to the cathode and the last point
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Figure 2.6: The z-vertex distributions for the reconstructed tracks in the RTPC.

is close to the anode. The sdist and edist distributions are shown in figures 2.9 and 2.10
respectively.

• Vertex correspondence: the track reconstructed in the RTPC has to originate from the same
place as the electron that triggered the event. We define ∆z as the difference between the
electron z-vertex and the z-vertex of the RTPC track. Due to variations in the electric and
the magnetic fields along the 200 cm of length of the RTPC, ∆z shows a dependence on
the longitudinal position along the RTPC (zRTPC). This can be seen in figure 2.11. These
distributions are fitted to extract the mean and the width of ∆z as a function of zRTPC. We
then apply a 2σ cut around the mean to select the RTPC good tracks. The parametrizations
of the mean (µ) and the width (σ) of ∆z can be found in Appendix B.

Figure 2.7: The radius of curvature of the
reconstructed tracks in the RTPC.

Figure 2.8: The χ2 distribution for the posi-
tive tracks in the RTPC. The red line repre-
sents the cut we apply to select good tracks.
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Figure 2.9: sdist distribution for the positive
tracks in the RTPC. We set |sdist| < 2.0 mm
to select good tracks.

Figure 2.10: edist distribution for the positive
tracks in the RTPC. We require -1.0 mm <
edist < 5.0 mm to select the good tracks.

Figure 2.11: The ∆z distribution versus the RTPC longitudinal position (zRTPC) for the left and
the right modules of the RTPC, respectively. The black lines represent the mean value of ∆z as a
function of zRTPC, while the red lines are 2σ cuts around the mean.

2.2.1.2 Elastic selection

The elastic process on 4He is defined as:

e(k) +4 He(p)→ e(k′) +4 He(p′) (2.3)

with the symbols in parenthesis representing the four-momenta of the particles.

In addition to the previously good-track requirements, in order to select the elastic events we
impose further constraints. The co-planarity between the scattered electron and the recoil 4He
is ensured using a ∆φ (=φe − φ4 He) cut as shown in Figure 2.12. Like for ∆z, the ∆φ 2σ cut is
dependent on z to account for variations. Our final parametrizations can be found in Appendix
B as well.
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Figure 2.12: The distributions of ∆φ as a function of z along the RTPC for the selected good tracks
in the RTPC, for the two halves of the RTPC respectively. In each plot, the black line is the mean
of ∆φ and the red lines are 2σ cuts to select the elastic events.

An additional elastic cut is performed by comparing the measured 4He polar angle to the
calculated one, based on the measured electron in CLAS. Indeed, from momentum conservation
the 4He polar angle can be calculated as:

θ
4 He
cal = sin−1

(
pe′

p4 He
cal

·
√

1− cos2θe′

)
(2.4)

with p
4 He
cal =

√
(Eb + M4 He − pe′)2 −M2

4 He (2.5)

where pe′ and θe′ are the electron’s measured momentum and polar angle, Eb is the beam energy
and M4 He is the helium mass (3.727 GeV/c2). Figure 2.13 shows the ∆θ (θ

4 He
cal - θ

4 He
meas) distribution

versus the 4He z-vertex. No significant difference was observed between the two modules
regarding this quantity. The obtained parametrization of the mean and the width of the ∆θ

distribution can be found in Appendix B.

Figure 2.13: The ∆θ distribution, for the selected events after the ∆φ cut, as a function of z along
the RTPC. The black line represents the mean, while the red lines are 2σ cuts around the mean to
select the elastic 4He events.
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Constructing the invariant mass is one way to verify the efficiency of the previously described
selection procedures. For a helium target, the invariant mass (W) is:

W =
√
−2Eb pe′ (1− cos(θe′ )) + M2

4 He + 2(Eb − pe′ )M4 He. (2.6)

with the conventions for the variables as in equation 2.5. Figure 2.14 shows the W distribution
of the events that have a good track in the RTPC and the identified elastic events. One can see
the good agreement between the helium-4 real mass and the mean value of the identified elastic
events.

Figure 2.14: The invariant mass distributions for events with one good RTPC track (in blue)
and the events passing the elastic cuts (in shaded) for each of the two modules of the RTPC,
respectively.

The figures presented for ∆z and ∆φ distributions in this section are shown after all the cal-
ibration and detector alignments (RTPC alignment is described in CLAS-NOTE-2013-008). The
observed remaining dependences are not fully understood and probably arise from field mis-
alignement and variations in the electric and magnetic fields within the chamber.

2.2.2 drift paths and drift speed calibration

2.2.2.1 Drift speed parametrization

The electrons follow their drift paths with a certain speed, named drift speed. This speed is
affected by the experimental conditions, such as the variations in the magnetic field or in the gas
composition. We can measure this speed using the tracks detected in the RTPC, as it is explained
in this section.

In our TPC, the electrons released close to the cathode take the maximum drift time (TDCmax)
to reach the readout pads while the geometrical symmetry along the RTPC ensures that these
electrons always travel the same distance. Therefore, by identifying the TDCmax, the drift speed
can be deduced. Figure 2.15 shows the time profile of the collected hits for the detected good
tracks. The experimental drift time ranges between the trigger time (TDCmin = 15 TDCs) to 75
TDCs. The time profile shows an expected dropping edge at high TDCs due to the geometrical
constraints. In order to avoid the statistical effects in determining the TDCmax, we define a value
named as TDCmax/2 at which the dropping edge passes to half of the maximum number of hits
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in each hits-time profile. TDCmax/2 is inversely proportional to the drift speed.

We measure the TDCmax/2 along the length of the RTPC to take into account the variations in
the electric and magnetic fields. The results can be seen in figure 2.16, where a clear variation of
the drift speed along the RTPC was observed.

Figure 2.15: Time profile of the collected hits for the RTPC good tracks in one experimental run,
run 61511. The TDCmax/2 is the time at which the dropping edge passes half the maximum
number of hits.

We also monitor the TDCmax/2 evolution during the time of the experiment, to take into
account variations. The EG6 experiment has recorded data with different electron-beam energies:
1.204, 5.7, 6.064 and 1.269 GeV. The 5.7 and 6.064 data sets have low elastic cross sections com-
pared to the 1.206 and 1.269 data sets. For this reason, we use all the RTPC good tracks and not
only the elastic ones for these. Before checking the stability of TDCmax/2 over the experimental
running period, we want to check the feasibility of using all good tracks for the purpose of
parametrizing the drift speed. In this check, the TDCmax/2 identified using the good tracks of
the 1.206-GeV data set is compared to the one identified from the elastic events of the same data
sets. The result is shown in figure 2.17, in which the ratio between the two TDCmax/2 is plotted
as a function of the longitudinal position along the RTPC. This ratio is consistent with 1, within
1%. Thus we can conclude that using the hits of the collected good tracks is a good approximation.

The variations with time of TDCmax/2 are shown in figure 2.18, in which each point is a run of
about two hours of data taking. One can see a non-negligible variation over the three months of
data taking due to the changes in the experimental conditions. The main cause of these variations
is probably the variation of proportions in the drift gas mixture which was not perfectly under
control due to leaks in the thin parts of the detector.

As TDCmax/2 − 15 (= Dri f t path length
Dri f t speed ) varies with both run number (time) and the geometry of

the RTPC (z along the RTPC). We parametrize the dependence on z for each run in the form:

TDCmax/2(z) = p0 + p1 ∗ ep2∗(z−p3)2
. (2.7)

Then fits are performed for these parameters as functions of the run number, such that the drift
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Figure 2.16: TDCmax/2 variation as a function
of the longitudinal position along the RTPC
in one experimental run, 61510.

Figure 2.17: Ratio between TDCmax/2 ex-
tracted using the RTPC good tracks and the
one extracted using the clean elastic events,
both from the 1.204-GeV dataset.

speed parametrization depends on the run and z along the RTPC. The numeric parametrizations
of p0, p1, p2, and p3 can be found in Appendix B, table B.1.

These functions are implemented in our reconstruction codes, and, as a result of adapting
the drift speed with these functions, more good tracks and elastic events were identified
comparing to the previous calibration set. Figure 2.18 also shows the gain percentages of the
good tracks (GT) and the elastic events (El) in few runs. One can see a gradual improvement
with time because of giving the right drift speed, which together with the drift paths gives more
precise reconstructed hits chain. Therefore, the parameters of the reconstructed tracks (sdist, edist
... etc) are more likely to pass the selection requirements and so more tracks are found to be good.

2.2.2.2 Drift paths parametrization

A drift path is the trajectory that an electron follows after being released in the drift region.
The standard software to calculate these paths is the MAGBOLTZ program [29]. This program
requires precise knowledge of the experimental conditions, such as the detector’s geometry,
the exact composition of the drift gas and the applied electric and magnetic fields. Thus any
variation in these conditions would give inaccurate calculated drift paths. In the EG6 experiment,
MAGBOLTZ has been used to calculate a first set of drift paths, but it was observed for the drift
speed that we do not have a perfect knowledge of the RTPC’s conditions. Therefore, the first set
of the drift paths is not accurate. For this reason, we chose to calculate the drift paths in a way
that does not require an exact knowledge of the conditions in the chamber and is instead based
on our experimental data.
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Figure 2.18: The integrated TDCmax/2 over the full z-RTPC as a function of run number. The gain
after calibration in the collected good tracks (GT) and elastic events (El) are shown for a sample
of runs.

In our alternative method, we use the identified elastic (e 4He → e 4He) events to extract the
drift paths. For these events, the kinematics of the recoil 4He are calculated from the scattered
electron. Then the electrons’ drift paths can be extracted from comparing the experimentally
measured hits in the RTPC to the trajectory of a similar simulated 4He. In this technique, the
drift paths are obtained independently of our knowledge of the exact conditions in the RTPC, in
particular the electric field and the gas mixture have no impact.

Due to the magnetic field, the drift paths are not linear. This is handled by the following
procedure, in which we perform the drift paths’ extraction in two passes. In the first pass, we
assume a linear correlation between the radius of emission R (we work here in radial coordinates:
R and φ) and the drift time, to link the GEANT4 hits to the measured hits. Through this
association, we obtain an initial set of drift paths in the form of a ∆φ distribution as function
of time. We define ∆φ the difference between the φ of the simulated hits and the φ of the pad
which measured a hit. In the second pass, we refine the initial correlation between the radius
and the time using the initial drift paths, and we extract final drift paths. To take into account the
variations of the magnetic field and therefore the varying Lorentz angle, the extraction is made
in z bins along the RTPC.

The procedure steps are:

• We first select a sample of well identified elastic events in our experimental data. Using the
kinematics of the scattered electrons in these events, we generate in GEANT4 a sample of
events identical to the measured ones.

• For each couple of events (the experimental one and its simulated equivalent) we make a
linear correlation between R, from simulation, and TDC from real data, to link the GEANT4
hits to the measured ones. In our TPC, the maximum R equals 60 mm (close to the anode)
at the trigger time, (TDCmin = 15 TDCs), and the minimum R equals 30 mm (close to the
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Figure 2.19: (First pass). Distribution of ∆φ as a function of TDC for in one z bin. The width of
the bin is 10 mm, with the center at z = 5 mm. The black line represents a fit for ∆φ.

cathode) at maximum TDC (TDCmax). Thus, the linear correlations can be written as:

R(TDC) =
60− 30

15− TDCmax
(TDC− 15) + 60. (2.8)

We apply 3 TDCs-wide windows around the linear R-TDC correlation to associate the
GEANT4 simulated hits to measured hits.

• From these selected hits, we construct the drift paths ∆φ (= φsim. - φhit_pad) versus TDC. The
results can be seen in figure 2.19. ∆φ at the anode (TDC = 15) is not equal to zero because
there is a drift in φ between the anode (the first GEM layer at radial distance equal to 60
mm) and the readout pads (at radial distance equal to 69mm).

Figure 2.20: (Second pass). The calculated R as a function of TDC is corrected by the ∆φ relation
extracted from the first pass.

• The correlation between R and TDC is refined using the extracted initial ∆φ as a function of
TDC as:

R(TDC) = Rmin +
[ TDC

∑
i=TDCMax

√
DS2 − R2(i) ·

(
∂∆φ

∂TDC
(i)
)2 ]

· TDC, (2.9)
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Figure 2.21: (Second pass). Distribution of ∆φ as a function of TDC located in the same z bin
shown in figure ??. The black line represents the final drift paths.

where DS is the average drift speed, equal to 0.7 mm/TDC ( 6.14 µm/ns), Rmin equals to 30
mm, R(i) is the linear correlation defined in equation 2.8 and ∆φ(i) is the fit in figure 2.19.
The sum is multiplied by a TDC (=114 ns) unit. The calculated R, figure 2.20, is very close
to a straight line, indicating that only two itterations are probably enough.

• In the second pass, we use the newly found R(TDC) relation to construct new ∆φ distribu-
tions, see figure 2.21.

We performed a third pass in which the R(TDC) correlation is refined using the drift paths
from the second pass and new drift paths were extracted. As a result, we observed no difference
between the drift paths of the second and the third passes. In other words, extracting the drift
paths from two iterations gives us stable drift paths.

The first drift paths were extracted using the elastic events from the early 1.204 GeV dataset.
In order to ensure the consistency of these drift paths over the experimental running period, we
extracted another set of drift paths using the elastic events of the 1.269 GeV runs. We observed no
difference between the two sets of the drift paths, ensuring their stability over the experimental
period and leaving the dependence on the TDC and z. The final drift paths are extracted using
both datasets, 1.204 and 1.269 GeV. They take the form:

∆φ(TDC, z) =
4

∑
i=0

pi(z) ∗ TDCi, (2.10)

where the parameters, p0, p1, p2, p3 and p4 are functions of z, as can be seen in Appendix B, table
B.2. The final drift paths are implemented in our reconstruction codes such that the reconstructed
position of each hit becomes:

φexp(z, TDC) = φhit_pad − ∆φ(z, TDC). (2.11)

It is important to note that the drift paths have shown strong sensitivity to the other RTPC
calibrations. Therefore, we performed iterative extractions of the drift paths and, as a results,
obtained more good tracks with a signal to background ratio largely improved. Figure 2.22
shows an illustration of the improvements in terms of the sdist parameter using the same initial
collected data with an old drift paths and a newer set.
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Figure 2.22: The sdist distribution for the collected tracks in the RTPC using the same initial
collected data with an old set of drift paths, on the left, and a newer set, on the right.

2.2.2.3 summary

The drift paths and drift speed were first extracted using the MAGBOLTZ Monte Carlo simula-
tion. One can find the detailed procedure of a similar extraction in the BoNuS analysis note [28].
Then, we improved this first result with many iterations after each change that would affect the
drift paths, such as the beam-offset and gain calibrations of the RTPC. Moreover after each pass,
the number of elastic events used for calibration increased, justifying by itself a new calibration.
Overall, this was a long process that evolved and improved over the years and we concentrated
in the note on the description of the final iteration of this calibration.

2.2.3 Gain calibration

The second important calibration is the amplitude of the signal provided in ADC units. Since
each charged particle deposits a certain amount of energy ( dE

dX ) when crossing a material, we can
identify particles based on this variable. The ( dE

dX ) depends on the characteristics of the particle,
such as its energy, mass and charge, and the nature of the medium as well.

dE
dX can be calculated using the Bethe-Bloch formula [32]:〈

dE
dX

〉
= ρKz2 Z

A
1
β2

[
1
2

ln
(

2mec2β2γ2Tmax

Imax

)
− β2 − δβγ

2

]
(2.12)

with Tmax =
2mec2β2γ2

1 + 2γme/M + (me/M)2 (2.13)

where Tmax is the maximum kinetic energy of a free electron in a single collision, and z, M,
β are the charge, mass and speed (=p/

√
M2 + p2, where p is the momentum) of the particle,

respectively. me is the electron mass and the constant K is equal to 4πNAr2
e mec2 = 0.307075 MeV

mol−1 cm2. Z, A, I, ρ are the effective charge, atomic number, mean excitation energy and mass
density of the medium. In the RTPC, these constants are equal to 66, 126.79 mg mol−1, 99.79 eV
and 1.03 mg/cm3, respectively.
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Experimentally, dE
dX can be calculated from the collected ADCs as:

〈
dE
dX

〉
=

∑
i

ADCi
Gi

vtl
, (2.14)

where the sum runs over all the pads contributing to a track. ADCi is the recorded amplitude
in each pad i, and Gi is its gain. The vtl is the total visible length of the track in the active drift
volume.

The electron collection system of the RTPC has 3200 readout pads. The gain of each pad is the
ratio between the deposited energy and the output recorded value. We extracted the gains using
two techniques. The first one is by comparing the experimental recorded dE

dX to the expected
values calculated from the Bethe-Bloch formula. The second technique is based on comparing
the experimental ADCs to the GEANT4 simulated ones, track by track. We latter refined this
second method by comparing the ADCs of each pad to the average ADCs of the other pads in
the same track.

The two techniques were investigated for the EG6 experiment using the elastic events from
the 1.206 GeV data set. The first method involves a series of equations to be solved to obtain the
gains.

The second method requires improvements in the simulation, in order to match the real
experiment. In summary, these improvements are:

• Implementation in the simulation of the previously extracted parametrizations of the drift
speed and the drift paths.

• Global ADC normalization to give reasonable simulated values. In the left module, 1 ADC
is equal to 17 eV, while it is equal to 21 eV in the right module. These normalizations were
extracted from the comparison of the data to the GEANT4 simulation.

• Rejection of the signals from bad pads. During the experiment, the readout system of the
RTPC suffered from 555 dead or noisy pads. These pads are marked by the dotted squares
in figure 2.26.

• Smearing the position of the simulated hits. Experimentally, the average number of hits
per track is around 80 while the initially reconstructed mean value from the simulation is
around 50. We apply a Gaussian smearing on the position of the simulated hits to make the
simulation more realistic, see figure 2.23.

• Application of the TPC’s DAQ cut on the simulated data. Experimentally, each pad must
have at least 3 consecutive time bins, with ADC values above the threshold, 35 ADCs, in
order to be recorded. Then, the hits of three neighboring bins on each side of the above
threshold bins are also recorded, while the other hits are not.

To illustrate the procedure of comparing simulated tracks with real tracks, we show in Figure
2.24 the simulated ADCs and the experimental ones as a function of the TDCs for the same track.
Then, the gain of each pad can be obtained as the ratio of the mean experimental ADCs to the
one of the simulated track. For each pad, these gain ratios were collected from all the identified
elastic events and fitted by a Landau function to obtain their gains.

As mentionned earlier, we refine this calibration after the extracted gains are applied to the
experimental data. We compare the ratio between the mean ADCs of each pad to the mean ADCs
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Figure 2.23: The distributions of the number of hits per track. The black, the blue and the red
distributions are the number of hits per track for respectively, the experimental data, simulation
before smearing and the simulation with smearing.

of the whole track. This ratio is collected from all the elastic events and a gain correction factor
is extracted for each pad. The final gains of the second method are obtained with the application
of this extra correction.

As the two modules of the RTPC are electronically separated, we look at their calibrations
separately. Figure 2.25 shows the ratio between the calculated dE

dX , using the gains of both
methods, and the GEANT4 simulated dE

dX for the elastic events in the two modules of the
RTPC. We conclude that extracting the gains from comparing data to simulation in terms of
the ADCs of the individual tracks gives more precise gains than solving the series of equa-
tions. Figure 2.26 shows the gains from the second method, where the dotted squares refer to
the dead or noisy pads. These are the ones that are implemented in the EG6 reconstruction codes.

In the left module of the RTPC, figure 2.25, one notices an additional unexpected lower peak
(dEdxexp/dEdxsim ∼ 0.3). These events pass all the elastic requirements but for some reasons
they have lower ADC values. They represent around 7% of all the elastic events. After extended
studies, the nature of these particles is not identified yet. We note that this is a global phenomenon
in the left module as 94% of the left module’s pads are involved in both some low and high dEdx
events. For instance, figure 2.27 shows the average ADC versus TDC distributions for the recorded
hits in one of these pads in the left module. For the calibration procedures, the events with low
dEdx were excluded from the usage as we do not fully understand their nature, see figure ??.

To check the validity of the extracted gains, we show dE
dX versus the momentum (per charge

unit) measured in the RTPC for all the collected tracks of the 1.206 GeV data set. In the plots,
we add the theoretical lines derived from the Bethe-Bloch formula for possible detected particles:
4He, 3He, 3H, Deuterium (d) and the protons. One can see the different bands corresponding
to the different detected particles. Even though the bands are very wide, the dE

dX can be used to
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Figure 2.24: The simulated (top) and the experimental (bottom) ADCs versus TDC distributions
for the same track. The same colors indicate hits that were registered in the same channel for the
simulation and the experiment.

Figure 2.25: The ratio between the experimental dE/dx, using the gains obtained with the two
methods (1st in blue, and 2nd in black), to the GEANT4 simulated dE/dx, plotted for the two
modules of the RTPC, respectively left and right.

perform particles identification for large data set and different physics processes. In this analysis,
the dE

dX is not used to identified the recoil 4He in the coherent DVCS event selection, as the set of
exclusivity cuts that will be presented in chapter 4 appears to be strict enough.
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Figure 2.26: The extracted gains from the second method. The dotted squares refer to the position
of the excluded pads.

Figure 2.27: The average ADC vs. TDC distributions of the experimental hits recorded for the
elastic events in one pad of the left module, pad number 706. On the top: the distribution for the
elastic tracks in the region where dEdxexp/dEdxsim ∼ 1. On the bottom: the distribution for the
elastic tracks that exhibit dEdxexp/dEdxsim ∼ 0.3.
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Figure 2.28: DEdx as a function of the measured momentum inside the left module of the RTPC
for a sample of the identified elastic 4He tracks. The red dashed line represents the cut we applied
to exclude the low dEdX events from usage for the calibration purposes explained earlier in this
chapter.

Figure 2.29: The experimental dE
dX calculated using the second method gains versus p/q of all the

collected good tracks in the RTPC in the early 1.204 GeV dataset.

2.2.4 Noise rejection

The RTPC was designed to reduce noise and contribution from Møller electrons via the first
and second 1 atm gas gaps. During data taking, the readout thresholds of the RTPC were set low
to avoid efficiency problems, with the effect of recording more electronic noise. The latter effect
is illustrated by the large occupancies in the top panel of figure 2.33.

Two independent noise signatures were found, and event-based algorithms were implemented
to significantly reduce them offline. This resulted in improved track quality, increased track
efficiency, and the opportunity to reintroduce channels otherwise determined to be too noisy.
This also resulted in more uniform occupancy, shown in the bottom panel of figure 2.33.

Here we describe the methods and their specific effects. These are implemented in EG6’s
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pass2 reconstruction in $CLAS_PACK/gem/noisypads.c.

2.2.4.1 Oscillatory Noise

An oscillatory noise signature was found for many RTPC readout pads, and is attributed largely
to the electronics. The signature is a series of hits falling on a fixed ADC vs TDC curve for TDC
less than 30. About 18% of the active pads have very strong contributions from this type of noise,
which previously resulted in many of them being marked as “bad” due to high occupancies.

An algorithm was developed to remove hits corresponding to this noise without suppressing
good hits. First, the ADC vs TDC noise curve was parameterized. Next, for every event and
channel independently, the number of hits falling on this curve is counted. If a significant number
of hits lie far above or below the noise curve, no rejection is performed. If most of the hits below
TDC=30 fall on the noise curve, all hits below TDC=30 are rejected for that channel. Figure 2.30
shows the effect of this noise reduction for one very noisy pad.

The result of this algorithm is 5% more good tracks reconstructed, with improved signal to
background ratio, as can be seen in figure 2.31. Further, this allowed to recover 40 channels that
had previously been ignored due to high occupancies before this noise rejection.

Figure 2.30: The integrated ADC vs. TDC of the hits for good tracks before (left) and after (right)
the oscillatory noise reduction, for a particular pad with strong noise. The event sample and color
scales are identical in both plots.

2.2.4.2 Readout Group Noise

Another noise signature is isolated to particular readout boards, corresponding to 8x2 channel
groups. Initially many of these 8x2 groups were ignored in reconstruction due to very high
occupancy (see figure 2.33). Upon further analysis, we found many events where these groups
behaved normally and measured good tracks, while in other events the whole 8x2 channel group
fired. In other words, the noise level of channels within the groups is correlated in time.

An event-based method was implemented to treat this noise by computing an event pedestal
for the entire group for cases when there exist neighboring hits. Hits in the 8x2 with no neighbor-
ing hits outside the group were used to calculated an event pedestal for the group. That pedestal
is subtracted off all hits in the board in that event. If there are no neighboring hits outside the 8x2
group, the whole group is rejected in that event.

The effect of this algorithm on a couple reconstructed tracks is shown in figure 2.32. The
overall result was another 5% increase in good tracks, and this noise subtraction also allowed to
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Figure 2.31: The edist (left) and the χ2 (right) distributions for all the tracks collected in the RTPC
before (blue) and after (red) the oscillatory noise rejection. The event sample and color scales are
identical in both plots.

recover 32 more channels previously ignored due to high occupancy.

Figure 2.32: Example effects of readout board noise subtraction for tracks in two events (corre-
sponding to the two rows in the figure). The known hot 8x2 readout groups are shown in the
orange rectange in the leftmost column. Color scale is ADC.
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Figure 2.33: Occupancies before (top) and after (bottom) the two noise reduction algorithms. The
event sample and occupancy color scales are identical in the two plots.
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Figure 2.34: z-vertex of scattered electrons from the downstream window of the target. The
z-vetex resolution of CLAS here is about 3 mm.

2.3 Tracking resolution

The RTPC tracking resolution is defined as the spread of the reconstructed track vertex, angles
and momentum with respect to their true values. In the EG6 experiment, we use the cleanly
identified elastic events to estimate the RTPC resolutions. The CLAS detector nominally provides
electron detection with an angular resolution around 1 and 4 mrad in θ and φ, and a momentum
resolution ( ∆p

p ) around 0.5% [19]. The z-vertex resolution of about 3 mm for an extended target
in the presence of the solenoid, as can be observed experimental from the target window, figure
2.34.

With such electron resolutions, one can extract the RTPC resolutions by comparing the
calculated kinematics of the recoil elastic 4He nuclei with the measured experimental values, as
shown in figures 2.35, 2.36, 2.37, 2.38 for the two halves of the RTPC separately. The distributions
are fitted with a Gaussian and the extracted widths are listed in table 2.1. One can see that
for the resolution, the two modules of the RTPC show almost the same performance. These
resolutions will be used to match the simulated data to the experimental ones, as will be shown
in the following chapter.

One notices slight shifts in ∆z, ∆φ, and ∆θ distributions. The reason of the shifts may rise
from our non-perfect knowledge of the exact conditions in the chamber, such as the magnetic
field, that affect the reconstructed parameters of the tracks. The reconstructed momenta show
10-15% systematic shifts compared to the calculated values.

RTPC’s module σz σφ σθ σp
Left module 6.03 mm 1.93◦ 3.78◦ 9%
Right module 7.40 mm 1.94◦ 4.02◦ 8 %

Table 2.1: The resolutions of the two modules of the RTPC.
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Figure 2.35: The z-vertex resolution of the two modules of the RTPC, respectively.

Figure 2.36: The azimuthal angle resolution of the two modules of the RTPC, respectively.

Figure 2.37: The polar angle resolution of the two modules of the RTPC, respectively.

2.4 RTPC efficiency

The previous distributions have shown that the two modules of the RTPC have slightly differ-
ent yield, however this yield should not be linked to a different performance of the RTPC. The
differences are mainly due to complicated convolution of CLAS and the RTPC acceptance. We
measured the efficiency of the RTPC using the elastic scattering, and a result found that the left
and the right modules have similar efficiencies except near the target windows, as shown in figure
2.39.
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Figure 2.38: The momentum resolution of the two modules of the RTPC, respectively.

Figure 2.39: On top is the inclusive and exclusive elastic yields separated into the two RTPC halves
(LEFT/RIGHT). Here the inclusive yields are the number of electrons in the elastic W-peak whose
corresponding elastically scattered 4He would have been in the acceptance of the RTPC, and the
exclusive yields require the additional detection of the 4He. On bottom is the RTPC 4He efficiency
calculated from the ratio of exclusive and inclusive elastic yields.





Chapter 3

Particles reconstruction and simulation

The final state of a coherent (incoherent) DVCS event consists of three particles: an electron,
a 4He (a proton), and a real photon. To identify the DVCS events, we first identify, individually,
the different particles of interest. Then, events with three detected final-state particles will be
further filtered by imposing the energy-momentum conservation laws, as will be presented in
the following chapter.

Even after imposing the conservation laws, the DVCS sample will not have 100% truly DVCS
events. In our kinematical region, the main contamination to our DVCS channels comes from
the electroproduction of neutral pions. For instance, in the coherent π0-electroproduction, when
one of the two-photon decay of the π0 passes the DVCS requirements, it will be counted as a
DVCS event. Thus, these events have to be subtracted before looking to any DVCS observable.
For this purpose, we perform a technique in which we combine the measured exclusive π0-
electroproduction data sample with a Monte-Carlo simulation to evaluate the background in the
selected DVCS sample. For this technique, we need to identify the experimental π0s that come
in the coherent and the incoherent π0-electroproduction channels.

In this chapter, we presents the procedures carried out to identify the final-state particles of
interest, the Monte-Carlo simulation we used, and the kinematic corrections we applied on the
particles.

3.1 Particles identification

3.1.1 Electron identification

The electron detection triggers the data acquisition system to record data from all the sub-
detectors of CLAS. In this analysis, a particle which passes the following set of criteria is assumed
to be a good electron.

Initial requirements

• Negative charge: the torus magnet generates a field which has mainly azimuthal com-
ponents. Hence, the trajectory of a negative particle will be bent towards the beam line
direction without changing azimuth. Consequently, information on its charge is accessible
from the curvature of its trajectory.

• (DCstat, ECstat, SCstat, CCstat) > 0: these status variables are linked to the number of hits and
the thresholds in the different sub-detectors of CLAS. Thus, we select the electrons which
have positive status in the different sub-detectors as a first step to reduce the noise in the
data sample.

• stat > 0: this variable is positive if the trajectory of a particle passes the two steps of the
tracking in the DCs, Hit-Based Tracking (HBT) and Time-Based Tracking (TBT).
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Figure 3.1: The reconstructed longitudinal vertex of the collected negative particles. The two
dashed red lines represent the chosen cut, -77 cm < zvertex < -50 cm, to eliminate the particles
which originate from the windows and outside the target.

• Momentum cut (pe− > 0.8 GeV/c): during the data acquisition, the EC threshold was set to
200 mV corresponding to electrons having a minimum momentum of about 0.7 GeV/c. In
this analysis, we apply a conservative cut of 0.8 GeV/c to be above this threshold.

• Vertex cut: the target is centered at -64 cm with respect to the center of CLAS. Figure 3.1
shows the reconstructed z-vertices for the collected negative particles. One sees two sharp
peaks corresponding to the two aluminum windows at the ends of the target. These particles
have to be rejected as they originate from outside the target. As will be emphasized later,
we need an accurate determination of the electron’s vertex to ensure the correspondence
between the final-state particles, which all have to originate from the same point.

Fiducial cuts

Some regions of CLAS have to be excluded from the analysis to ensure an accurate
detection of the different particles. For instance, an electron that hits the edge of the EC
will have only part of its electromagnetic shower contained within the detector. Also, the
structure of the torus magnet divides CLAS into six separate sectors, which makes edge
effects non-negligible. For this reason, the following set of fiducial cuts is applied:

– EC fiducial cut: each EC has a triangular shape with its three sides labelled as U,V and
W. We apply a set of cuts (60 cm < U, V < 360 cm, W < 390 cm) to reject the electrons
which hit the EC close to the edges, as shown in figure 3.2.

– CC fiducial cut: in reference [21], G. Adams et al. have studied the efficiency of the
CCs. They found that within the fiducial regions, which are defined by the edges of
the CCs mirrors, the detection efficiency is stable and is around 98%. Outside the
fiducial regions, the efficiency shows strong variations. In reference [31], M. Osipenko
et al. have developed a coordinate system to represent the CC hits with respect to
the center of each sector in CLAS. In this frame, the CCs mirror edges can be defined as:
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Figure 3.2: On the left: XY distribution for the negative particles in the EC before the U, V and W
cuts. On the right: the same distribution is plotted after the cuts. X and Y are the coordinates in
the EC with respect to the center of CLAS.

Figure 3.3: Azimuthal angle as a function of polar angle for the negative particles before (left)
and after (right) applying the CC fiducial cut. The angles are calculated with respect to the center
of each sector in CLAS.
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Figure 3.4: On the left: XY distribution for all the negative particles in the first region of the DC
before applying the IC shadow cut. On the right: the same distribution after the cut.

Figure 3.5: XY distribution for all the negative particles in DC1 after applying the DC fiducial
cut.

φe = −63.32792 + 11.05609 · θe − 0.6344957 · θ2
e + 1.873895 ∗ 10−2 · θ3

e

− 2.762131 ∗ 10−2 · θ4
e + 1.604035 ∗ 10−2 · θ5

e . (3.1)

Based on these works, we reject all the hits located outside the mirror edges. Figure
3.3 shows an illustration of this cut.

– IC shadow cut: this cut originates from the location of the IC in front of the innermost
part of the DCs. The electrons which are produced at polar angles lower than 14◦ will
hit the IC. The left plot of figure 3.4 illustrates this effect, and the right plot shows the
effect of the cut we apply.

– DC fiducial cut: the DCs have low detection efficiency at the edges because only part
of the tracks are detected [20]. So we apply a fiducial cut to reject the particles at the
edges. The left plot of figure 3.4 shows the XY distribution of all the negative particles
in DC1. The result of applying the DC fiducial cut can be seen in figure 3.5.
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Figure 3.6: Deposited energies in the EC: Eout
as a function of Ein. The dashed red line rep-
resents a 60 MeV cut on ECin to reject the
π−s.

Figure 3.7: Etot/p as a function of p. The
black dashed line represents the mean value
of Etot/p as a function of p. The red dashed
lines represent the 2.5σ cuts.

EC energy cuts

The Minimum Ionizing particles (MIPs), such as pions, deposit constant amounts of
energy per distance while traversing the EC. In contrast, the showering particles, such as
electrons and photons, deposit energies proportional to their momenta. We use two energy
cuts to clean the electrons from the main contamination, i.e. π−s.

– Minimum deposited energy: the inner and the outer parts of the EC have thicknesses
15 cm and 24 cm, respectively. The simulations show that pions deposit a constant
energy amount of 2 MeV/cm, independently of their momenta. Figure 3.6 shows
the deposited energy in the outer part of the EC (ECout) as a function of the energy
deposited in the inner part (ECin), after the fiducial cuts. On the x-axis, one can see a
clear region, around 30 MeV, that comes mainly from the negative pions, which deposit
2 MeV/cm along the 15 cm thickness of the inner EC. We use a cut of 60 MeV on ECin
to reject these particles.

– An additional cut, correlating the measured deposited energy and the momentum, is
applied. Figure 3.7 shows the ratio of the total deposited energy in the ECs (ECtot =
ECin + ECout) to the momentum (p) as a function of p. One notices that ECtot/p varies
slightly with the momentum due to variations in the efficiencies of the DC and EC. We
apply 2.5σ cuts around the mean (µ) to select the good electrons, using to the following
parametrizations of the mean (µ) and the width (σ):

µ(p) = 0.256084 + 0.0432374 · p− 0.00914180 · p2 + 0.00081589 · p3 (3.2)

σ(p) = 0.0572976− 0.0272689 · p + 0.008576 · p2 − 0.00097998 · p3 (3.3)

CC cut

The Cherenkov counters have been designed to separate electrons from pions below
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Figure 3.8: Distribution of number of photoelectrons emitted by negative particles in the CC
(nphe·10). The black curve represents the distribution after the initial cuts, the blue curve is after
the geometrical cuts and the red curve is after applying all the cuts including the EC energy cuts.
The dashed red line represents the cut we apply (nphe > 2) to select the good electrons.

2.5 GeV/c momentum. In this region, the pions are not supposed to produce photoelec-
trons. However, low momentum δ-electrons can be produced from the diffusion of the
pions in the Cherenkov gas. These δ-electrons produce a small number of photoelectrons.
Figure 3.8 shows the distributions of the number of photoelectrons (nphe) produced by the
negative particles for three different stages of the electron selection.

One sees from figure 3.8 that the single-photoelectron peak is strongly reduced after apply-
ing the energy cuts. We conclude that the particles causing the single-photoelectrons peak
are linked to particles with low deposited energy in the ECin, figure 3.6. We apply a final
cut on the red distribution in figure 3.8 (nphe > 2), and we assume that the negative particles
which pass all the previous requirements and produce more than 2 photoelectrons in the
CC are good electrons.

3.1.2 Proton identification

Similarly to the electrons, the protons are affected by the geometry and the efficy of the different
sub-detectors of CLAS. The following conditions are applied to select the good protons.

• Coincidence with one and only one good electron.

• Initial track requirements: the positive charge of the proton results in bending its trajectory
away from the beam line direction. Thus, a positive charge is required from the curvature
of the track. Like for the electrons, the proton candidates must pass the two steps of the
tracking in the DCs, have signal above the threshold in the SCs (SCstat > 0) and originate
from a vertex within the target (-77 cm < zvertex < -50 cm).

• Fiducial cuts: the tracks of the protons detected close to the edges of the DC can only be
partially reconstructed. As for the electrons, the protons which are recoiled at polar angles
smaller than 14◦ hit the IC. We apply the previously presented (in section 3.1.1) DC and IC
shadow fiducial cuts to avoid these effects. Figure 3.9 shows the XY projection in the DC1
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Figure 3.9: XY plane projection in DC1 for the positive particles before (left) and after (right) IC
shadow and DC fiducial cuts.

for the collected positive particles which passed the initial track requirements, before and
after these two fiducial cuts.

• Velocity (∆β) cut: the previous cuts do not separate the protons from other positive particles,
such as positive pions and kaons. A very clear separation can be obtained by associating
the information from the SCs and the DCs. The velocity of a charged particle can be calcu-
lated by using the momentum (p) reconstructed in the DCs and the Time-Of-Flight (tTOF)
measured by the SCs. We define:

∆β = βSC − βDC =
ltrack

c · tTOF
− p√

p2 + m2
p

, (3.4)

where ltrack is the measured track length and mp is the proton mass. On the left plot of
figure 3.10, ∆β is plotted as function of momentum. One can see two main trends in this
plot: the region around zero corresponds to the protons, while the one above corresponds to
the positive pions (π+). The right plot shows a one-dimensional distribution of ∆β zoomed
in the region of the protons.

• Vertex matching: the last cut is the correspondence between the longitudinal vertices of the
detected electron and proton. Figure 3.11 shows the difference ∆z = ze − zp and the chosen
cuts (red dashed lines).

Finally, figure 3.12 shows the azimuthal angle as a function of the polar angle distribution for
the identified protons after all the selection cuts. One notices that the population of the protons
is different from one sector to another, which comes from the dead regions in some sectors.

3.1.3 Photon identification

CLAS is equipped with two calorimeters that can detect photons: the IC, covering polar angles
from 4◦ to 14◦, and the EC, covering polar angles from 8◦ to 45◦. Like for the other particles,
in addition to the coincidence with one good electron, we require a set of criteria to ensure the
quality of the detected photons. Due to the efficiency constraints in both calorimeters, we restrict
the energy of the selected photons to be greater than 300 MeV. Further requirements are applied
depending on each detector.
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Figure 3.10: On the left: ∆β as a function of p for the detected positive particles after the fiducial
cuts. On the right: one-dimensional distribution of ∆β zoomed in the region of the protons. The
red dashed lines represent ±3σ cuts around the mean to select good reconstructed protons.

Figure 3.11: ∆z distribution. The red dashed
lines indicate ±3σ cuts around the mean.

Figure 3.12: φ vs. θ for the selected protons.
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Figure 3.13: XY projection of the neutral par-
ticles in the EC. The coloured regions repre-
sent photons which passed the EC fiducial
cuts, while the black regions are out of the
fiducial cuts.

Figure 3.14: β distribution of neutral parti-
cles in the EC. The two vertical lines repre-
sent ±3σ cuts around β = 1 to select photons.

EC photons

A particle has to pass the following conditions in order to be considered a good photon:

• Neutral charge: this condition is achievable via the information from the drift chambers. A
photon candidate in the EC must not be associated with a track in the DCs.

• EC fiducial cut: like for the electrons, this requirement is made to reject the photons which
are detected at the edges of the EC. Figure 3.13 shows the XY plane distribution of EC
neutral particles. We use the cuts: 100 cm < U, V < 360 cm, and W < 390 cm, to select the
EC photons.

• Velocity (β) cut: the scattered electron and its associated photon originate from the same
vertex. Knowing the electron vertex (

−→
Ve ) and the photon hit position in the EC (

−→
Rγ), one

can calculate the photon velocity β as:

βγ =
l
ct

=
|−→Rγ −

−→
Ve |

c(tEC − ttrg)
(3.5)

where l is the traveled distance from the vertex to the hit point in the EC. The traveling time
(t) is calculable from the relative difference between the trigger time (ttrg) and the EC timing
(tEC). Figure 3.14 shows the β distribution of the neutral particles in the EC.

IC photons

For IC photons, we use the following cuts:

• IC fiducial cuts: the photons which hit the edges of the IC deposit only part of their energies
within the calorimeter. For this reason, we reject the photons which hit the innermost or the
outermost rings of the IC. Figure 3.15 illustrates this cut [33].
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Figure 3.15: XY distribution for the IC pho-
tons. The photons which hit the black in-
nermost and outer regions are excluded from
this analysis.

Figure 3.16: θ versus E for the IC photons
which passed the fiducial cuts. The black
dashed line represents the cut to reject the
Møller electrons.

Figure 3.17: On the left: φ versus θ for all the neutral particles before the cuts. On the right: φ vs.
θ for the the selected photons.

• Møller electrons reduction: a two-dimensional plot of photon polar angles as a function of
the energy shows an overcrowded region at low θ and low energy. This can be seen in figure
3.16. This region is mostly populated by the Møller electrons and must be excluded from
the analysis. We optimized a linear cut for this region, shown by the black dashed line. The
vertical extension of this line shows the minimum energy cut (Eγ > 300 MeV).

To summarize the photon selection, the two-dimensional distribution of azimuthal angle as a
function of polar angle for IC and EC photons is shown in figure 3.17.

3.1.4 Helium-4 identification

Details on the RTPC’s structure and the definition of the different variables were given in
chapter 2, section 2. In the following, we show the cuts to select the RTPC good tracks with a
6-GeV beam energy. The distributions will be shown for the two independent modules of the
RTPC separately, labelled as left and right sides. The cuts are:
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Figure 3.18: The number of active pads versus the measured p for the good tracks collected using
6 GeV electron beam energy.

• Coincidence with one and only one good electron.

• Number of active pads greater than 3: the track has to have recorded hits from at least four
different readout pads. Figure 3.18 shows the distribution of the number of active pads as a
function of the total momentum measured in the RTPC for the identified good tracks using
6 GeV electron beam energy.

• Positive radius of curvature.

• Vertex cut: figure 3.19 shows the z-vertices of the positive-curvature tracks.

• Track helix-fit quality: figure 3.20 shows the χ2 distributions for the positive tracks originat-
ing within the RTPC. We apply χ2 < 3.5 to select good 4He tracks.

• sdist and edist cuts: figures 3.21 and 3.22 show the sdist and edist distributions, for the
positive tracks, originated within the RTPC, and having good χ2 values.

• Z-vertex cut: like for the protons, the RTPC’s reconstructed track has to originate from the
same electron vertex. Figure 3.23 shows the difference between the z of the reconstructed
vertices of the electron and the associated RTPC tracks.

• Fiducial cuts: to remove the tracks which hit the upstream of the targets holder or are not
completely in the detection area. Figure 3.24 illustrates the effect of the fiducial cuts in
addition to the previous cut, in which azimuthal angle is plotted as a function of polar
angle for the tracks in the RTPC before, and after all the cuts.

• In this work, due to the wide bands in dEdx distributions, we do not use this quantity to
select the recoil 4He nuclei. We claim that the kinematic exclusivity cuts, that are presented
in chapter 4, are sufficient to select coherent 4He DVCS events. A systematic check about
this question is presented in chapter 4.
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Figure 3.19: z-vertices for the reconstructed
positive tracks with respect to the RTPC cen-
ter (-64 cm with respect to the CLAS center),
in the two modules of the RTPC. We chose
the cut -80 mm < z < 80 mm to select good
tracks.

Figure 3.20: χ2 distribution for the tracks in
the two modules of the RTPC, with the cut
we require to select good tracks: χ2 < 3.5.

Figure 3.21: sdist distribution for the positive
tracks in the RTPC. |sdist| < 2.0 mm cut is
applied to select good tracks.

Figure 3.22: edist distribution for the
positive tracks in the RTPC. We require
−1.0 mm < edist < 5.0 mm to select good
tracks.
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Figure 3.23: The correspondence between the z-vertices of the detected electron and the good
track in the RTPC. We require the absolute value of ∆z to be less than 20 mm.

Figure 3.24: On the left: φ vs. θ for the positive-curvature tacks in the RTPC before the cuts. On
the right: the same distribution after all the cuts.
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Figure 3.25: The reconstructed invariant mass of the photon pairs in the three topologies: ICIC,
ECIC and ECEC. On the bottom-right: φ vs. θ distribution for the simulated DVCS photons,
shown that most of the DVCS photons are located in the IC.

3.1.5 π0 identification

In this analysis, we identify the π0s with the goal of DVCS background subtraction as
will be addressed in section 4.5. The π0 identification is based on its two real photons decay
mode (π0 → γγ), with a branching ratio around 98.8%. In our experimental configuration, the
reconstructed neutral pions can be categorized into three topologies: ICIC (the two photons are
detected in the IC), ICEC (one photon in the IC and the second in the EC), and ECEC (the two
photons are detected in the EC). The nominal mass of the π0 is 0.135 GeV/c2. The reconstructed
invariant mass of the detected pair of photons can be seen in figure 3.25, for the three topologies.
One can see clear peaks corresponding to the neutral pions in the three distributions.

One can conclude from the mean and sigma values of the distributions in figure 3.25 that the
IC has a better energy resolution than the EC. About 97% of the simulated DVCS events, as can
be seen in the bottom-right plot, have the real photon emitted at very forward angles covered by
IC. For these reasons, we chose to exclude the DVCS events which have their photons in the EC.
Hence we are left with the two π0 topologies, ICIC and ICEC, for the background subtraction as
will be addressed later in this chapter.
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Figure 3.26: The scheme shows the main simulation steps.

3.2 Simulation

The Monte-Carlo simulation is used in this analysis for two goals: understanding the behaviour
of the particles of interest in the detectors, and computing the acceptance for the DVCS back-
ground subtraction. The key stages of the simulation are summarized in figure 3.26: Monte-Carlo
generated events pass in a GEANT3 simulation (GSIM) for the CLAS detector, then are processed
with a package called GPP to add resolution and efficiency effects, and finally are reconstructed
by a package named RECSIS, from which we obtain the physical quantities of each particle, like
it is done for real data. In the following, each simulation stage will be briefly presented.

3.2.1 Event generator

Events are generated in the measured ranges of Q2, xB, t, and φ following a parametrization
of the cross section which roughly reproduces the DVCS and exclusive π0 electroproduction data
[33]:

d4σ

dQ2dxBdtdφ
∝
(

Q2
0

Q2

)α

∗ 1
1 + ( xB−xc

c )2
∗ 1

(1 + bt)β
∗ (1− d(1− cos(φ)). (3.6)

This parametrization is the product of four factors which reproduce the DVCS and π0, character-
istics as follows:

• the Q2-dependent term accounts for the depth of the interaction: Q2
0 is the minimum allowed

value and the α is a parameter which controls the shape of the distribution.

• the xB term accounts for the dependence of the cross section on the parton distribution
functions, with xc the mean value of the Bjorken variable xB.

• the t term accounts for the t-dependence of the elastic form factors of the helium and of the
proton, via the parameters b and β.

• the φ term accounts for the cross section dependence on this angle, via the parameter d. The
DVCS and the BH have a different behaviour than the π0 exclusive events.

Table 3.1 shows the values of the parameters used for the cross section parametrization of
the four channels of interest: e4Heγ, e4Heπ0, epγ, and epπ0.

Regarding the protons in epγ and epπ0 channels, we apply the Fermi motion on the initial
protons based on the parametrization of C. Ciofi degli Atii and S. Simula [?]. Figure ?? shows the
Fermi momentum distributions of the nucleons inside 4He, where we apply a cut on the high-
momentum tail at 0.3 GeV/c, higher momentum should not contribute to the final DVCS sample
because of our exclusive cuts presented in the following chapter.

3.2.2 GSIM

GSIM is a GEANT3-based simulation of the CLAS detector, developed by the CLAS collabora-
tion [35]. This simulation takes into account all the experimental environment, such as the target’s
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Parameter e4Heγ e4Heπ0 epγ epπ0

Q2
0 1.0 GeV2/c2 1.0 GeV2/c2 1.0 GeV2/c2 1.0 GeV2/c2

α 2.5 3.0 1.5 1.5
b -11.0 GeV2/c2 -8.8 GeV2/c2 -1.408 GeV2/c2 -1.408 GeV2/c2

β 12.0 7.3 4.0 1.5
xc 0.2 0.3 0.2 0.5
c 0.2 0.3 0.2 0.5
d 0.4 0 0.4 0

Table 3.1: Values of the parameters adapted in our event generator.

Figure 3.27: Fermi momentum distribution of the nucleons inside 4He, in GeV/c.
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position, materials, and geometry, and also the various sub-detectors’ materials and geometries,
to reproduce the behaviour of particles traversing the detector. Nota Bene the reconstruction in
the RTPC is not implemented in GSIM, however its material is present.

3.2.3 GPP

For the purpose of making the simulation more realistic, the output of GSIM is fed to the
GSIM Post-Processing (GPP) package. This package applies resolution effects on the different
measured quantities, and also reads efficiency maps to match the simulation to the real experi-
ment. The resolutions are categorized into three groups, time, position, and energy resolution. In
the following, we present the techniques used in this work to extract the smearing factors for the
simulation.

SC time smearing

The GPP takes a single factor to smear the time in a Gaussian form. Figure 3.28 shows an
illustration of the time smearing effects, in which ∆β for the protons
(∆β = βmeasured − βcalculated ) is compared for data and simulation. The chosen SC smearing
factor is 2.1.

DCs position smearing

The GPP uses three factors to smear the positions of the hits in the DCs, in a Gaussian
form. These smearing factors are extracted from comparing simulation to data in terms of the
Time-Based Tracking (TBT) residual distributions, i.e. the deviation of the hits in the DCs from
the fitted track. Figure 3.29 shows the experimental, initial simulated, and smeared simulated
residual distributions for the collected good electrons and protons. The extracted smearing
factors are: (a, b, c) = (1.1, 0.85, 1.1), where the factor a stands for smearing of DC1, b for DC2,
and c for DC3. One can see the smearing effects by looking to the values of σ from the fit in each
Super-Layer (SL). We conclude that these factors match the simulation to the data.

IC energy smearing

An energy smearing for the IC photons is also needed. The GPP software uses three fac-
tors to perform this smearing: ic_a, ic_b, and ic_c, where ic_a accounts for the smearing of
the width of the noise around zero using a Gaussian, while ic_b and ic_c are the smearing
factors for the ADC values, using Gaussians as well. Our parameters are: 0.008, 0.036, and 0.024
respectively. Figure 3.30 shows the effect of these smearing factors on the simulated invariant
mass of the π0. The associated experimental distribution can be seen on the top left plot of figure
3.25. One notices that the smeared width of the simulated distribution matches the measured
experimental one.

3.2.4 RECSIS

RECSIS is the reconstruction package of CLAS which is used for both data and simulation.
The detector responses, in terms of ADCs and TDCs, are converted by RECSIS into physical
meaningful physical quantities, such as momentum, using lookup tables. In this process, the
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Figure 3.28: Illustration of the SC time smearing via the ∆β distributions for the protons. On the
top left: ∆β distribution of the experimental data. On the top right: the simulated data without
smearing. On the bottom: the simulated data after SC time smearing with a factor equal to 2.1.
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Figure 3.29: Time-Based Tracking (TBT) residual distributions for the electrons and the protons in
the first super-layer (top panel), the second super-layer (middle panel) and the third super-layer
(bottom panel) of the experimental data (first column), of the simulation without GPP (second
column), and the simulation with GPP DC-position smearing factors: 1.1, 0.85, and 1.1 for a, b,
and c respectively.
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Figure 3.30: The invariant mass of the Monte-Carlo simulated π0 without IC energy smearing, on
the left, and with smearing, on the right.

thresholds on the different detectors (DCs, CCs, ECs, SCs, IC, and RTPC) are applied to filter the
signals before the reconstruction procedures. After this reconstruction, the outputs of RECSIS for
the experimental and the simulated events can be compared directly, as will be presented in the
next section.

3.2.5 RTPC fastmc

All the sub-detectors of CLAS are implemented in the GSIM GEANT3 simulation except for
the RTPC, for which a GEANT4 simulation has been developed. As a first step, we replace the
RTPC’s simulation by a fast Monte-Carlo (fastmc) package at the level of the event generator
to make the simulated 4He more realistic and matching the data. This fastmc smears the 4He
kinematics and applies the RTPC’s acceptance. Regarding the smearing, the momentum, polar
angle, azimuthal angle and z-vertex of the 4He are smeared with Gaussians using the observed
tracking resolutions of the RTPC (see chapter 2, section 3). For the acceptance, the fastmc:

• ensures that the 4He track intersects the cathode and the gems of the RTPC.

• removes the tracks which pass in the dead area between the two modules of the RTPC.

• removes the track if it goes to the upstream end of the target’s holder.

• applies the RTPC’s thresholds on the momentum and the polar angle.

The fastmc is applied to the Monte-Carlo generated 4He for the channels e4Heγ and e4Heπ0.
The other particles are fed to GSIM through the previously mentioned simulation-reconstruction
chain procedures.

3.3 Kinematic Corrections

The simulation enables us to extract kinematic corrections for the different particles, by com-
paring the reconstructed physical quantities from the simulation to the initially generated ones. In
general, the reconstructed azimuthal angles of all the particles are consistent with the generated
ones, while the reconstructed polar angles and momenta show some deviations. Therefore, cor-
rections are required. In the following, the electron and the proton corrections are applied on both
data and simulation, while the simulated photons are corrected differently from the experimental
ones, as will be explained and justified.
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Figure 3.31: Electron corrections. On the left: The ratio of the reconstructed to the generated
electron polar angles is plotted as a function of the reconstructed polar angle. The mean of the
distribution is parametrized by the black curve. On the right: the momentum ratio (Rec/Gen) is
plotted as a function of the reconstructed momentum and parametrized by the black curve .

3.3.1 Electrons

The reconstructed kinematics of the simulated electrons are roughly consistent with the gener-
ated quantities, as can be seen in figure 3.31. Nevertheless, we extracted and applied corrections
on the electrons to achieve a higher precision. The corrected polar angles and momenta take the
form:

θcorr. =
θrec.

f (θrec.)
pcorr. =

prec.

f (prec.)
(3.7)

where f (θRec.) and f (pRec.) are the functions shown, respectively, on the left and right plots of
figure 3.31.

3.3.2 Protons

The same procedures for the extraction of the kinematic corrections of the electrons have been
carried out for the protons. The results can be seen in figure 3.32. The corrected polar angles and
momenta are obtained using equations 3.7 and the functions shown on each plot of figure 3.32.

3.3.3 IC photons in simulation

The simulated IC photons shows non-negligible polar angle and energy deviations from the
expected kinematics. This can be seen in figure 3.33. These deviations are almost systematic
shifts, in which the polar angle deviation might be coming from badly defined geometrical
values within GSIM. For these photons, we followed the same techniques of comparing the
reconstructed quantities to the generated ones in order to extract the correction functions.

As an illustration of the corrections, figure 3.34 shows the squared eγX missing mass dis-
tribution for the simulated epγ DVCS events before the corrections, on the left, and after the
corrections, on the right. In this configuration, the missing particle is the proton, such that the
expected mean value should be the mass squared of the proton (0.9382 = 0.8798). The right value
is obtained after the corrections.
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Figure 3.32: Proton corrections. On the left: the reconstructed-generated polar angle ratio is
plotted as a function of the reconstructed angle and fitted with the black curve. On the right: the
momentum ratio is plotted as a function of the reconstructed momentum.

Figure 3.33: Corrections for the simulated IC photons. On the left: the reconstructed-generated
polar angle’s ratio is plotted as a function of the reconstructed polar angles. On the right: the
energy ratio is plotted.

Figure 3.34: An illustration of the corrections in terms of the squared eγX missing mass distribu-
tion for the epγ simulated DVCS events.
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Figure 3.35: The invariant mass of the reconstructed π0 as a function of its energy. The red line
represents a linear fit.

3.3.4 IC photons in real data

For the experimental IC photons, we used the reconstructed invariant mass of the π0 in the
ICIC topology to ensure the consistency of the IC calibration over the acceptance of the detecor
and the experimental running time. In this investigation, we require each π0 photon to have a
minimum energy of 500 MeV in order to avoid low efficiency effects of the IC.

3.3.4.1 Run-dependent energy correction

In the CLAS-EG6 experiment, the reconstructed mass of the π0 displays a linear dependence on
the energy, as can be seen in figure 3.35. In order to ensure the consistency of the calibration over
time, we extracted this mass-energy dependence for the individual runs. Figure 3.36 shows the
extracted slope (α) and offset (β), from the linear fits of the mass versus the energy of π0, as a
function of run number. One notices a non-negligible variation over the experimental running
period due to changes in the experimental conditions, such as changes in trigger requirements
and beam position.

To extract energy corrections for IC photons, the two distributions of figure 3.36 have been
parametrized by piecewise functions of the form:

α(x) = c0 + c2

[
e−c3(x−c1) − e−c4(x−c1)

]
, (3.8)

β(x) = p0 + p2

[
e−p3(x−p1) − e−p4(x−p1)

]
, (3.9)

where the values of the parameters of α and β can be found in Appendix C (tables C.1 and
C.2 respectively). The requirement of a 500 MeV maximum difference between the two photons
allows to assume that the two photons have approximately the same energy (Eπ0 = 2Eγ). Then,
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Figure 3.36: The slope (α) and the offset (β) from linear fits of M0
π vs. E0

π, as a function of run
number. The red lines represent the fitting functions.
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the correction take the form:

Eπ0

corr

Mπ0

Theoretical = 0.135GeV
=

Eπ0

uncorr

Mπ0
uncorr

(3.10)

=⇒ Eγ
corr =

0.135 ∗ Eγ
uncorr

α(run) ∗ 2 ∗ Eγ
uncorr + β(run)

(3.11)

which takes as input the measured uncorrected photon energy (Eγ
uncorr), and the α and β

parameters, which depend on the run number. It then returns the corrected energy (Eγ
corr).

3.3.4.2 Position correction

Cluster position is reconstructed as a weighted average of its hits’ positions. Those hit positions
are taken as the center of the front face of their corresponding crystal. However, the energy
deposition of the shower occurs at some depth into the crystal. Due to the roughly focusing
design of the calorimeter, this effect is negligible for photons originating from a vertex near the
cystals’ focal point. However, for an extended target, and EG6 has the longest target used to date
with this calorimeter, this effect is significant and a correction necessary.

The focusing nature of this calorimeter allows us to treat this correction as only a shift in the
radius of the cluster position, δr (although other conventions could have been chosen, e.g. only a
shift in cluster z-position). This is essentially a geometric projection effect, and it can be param-
eterized in terms of shower depth d, and the angle of the photon θγ with respect to that of the
crystal’s longitudinal axis, θC:

δr =
d sin(θC − θγ)

cos θC
(3.12)

Each photon’s angle is calculated from its cluster’s position (x, y) and the corresponding elec-
tron’s z-vertex (or RTPC vertex in the case of EG6’s neutral trigger). The crystal angles are
parameterized in terms of cluster position based on the calorimeter design drawings (where 78.3
cm is the focal length):

tan θC =
√

x2 + y2

78.3 cm
(3.13)

The shower depth parameter d was treated as a free parameter and fit to the slope of
sin(θγ − θC) versus cos θC, where δr was determined by the PDG π0 mass. Energy-dependence
of shower depth was investigated but empirically found to be insignificant. The depth parameter
was further tuned to minimize the z-dependence of the reconstructed π0 mass peak, since z is the
most relevant reconstructed quantity least correlated with photon energy.

The resulting shower depth d was estimated to be 5.56 cm in equation 3.12. The effect of this
correction in terms of z-dependence is illustrated in figure 3.37.

3.3.4.3 Radial-dependent energy correction

After the previous corrections, we observed a remaining radial dependence of the reconstructed
π0 mass [37], where “radial” refers to the distance of the cluster from the beamline. This can
be seen in the left panel of figure 3.38. This is most likely attributed to a systematic error in the
original π0-based gain calibration, which may not have fully accounted for correlations between
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Figure 3.37: The measured fractional invariant mass of ICIC π0 as a function of the electron
z-vertex before (left) and after (right) cluster position corrections for shower depth.

Figure 3.38: IC radial dependence of measured π0 mass after all corrections prior to section 3.3.4.3
(left). Multidemesional dependence of π0 mass on radius and energy for a subset of the data
(right).

crystals and the strong variation in rates with radius. It is worth noting that this effect has also
been observed in the eg1-dvcs experiment in epγ missing mass [45].

To extract a correction for this behavior, photon pairs are selected with cluster radii differing
by less than 1 cm and energies differing by less than 500 MeV. Then the π0 mass peak was fit in
multidimensional bins of radius and energy. The result was a clear linear dependence on energy
within each radial bin; an example is shown in the right panel of figure 3.38. By fitting the linear
energy-dependence for each radial bin, with results illustrated in figure 3.39, a correction function
is derived:

Eγ
f inal =

Eγ
corr

2 ∗ S(r) ∗ Eγ
corr + O(r)

, (3.14)

where S(r) and O(r) are the fitted slope and offset, and Eγ
corr is the output of equation 3.11.

3.3.4.4 IC Correction Summary

These corrections for IC photons in real EG6 data have been implemented in pass2 reconstruc-
tion in $CLAS_PACK/icf/eg6iccorr.c and have been applied to the ICPB bank and used in this
analysis.
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Figure 3.39: The slope (left) and offset (right) resulting from the linear fits of the distributions in
figure 3.38. Note that fiducial cuts naturally reject radii below 4.3 cm and above 14.5 cm.

Figure 3.40: The distributions in black are without the IC photon corrections and in red with the
corrections. On the left: the missing energy distribution of e4Heγ DVCS events for data. On the
right: the missing energy distribution of epγ DVCS events for data.

By construction they put the measured π0 mass at 135 MeV over all kinematics and detector
acceptance. But large improvements are also seen in exclusive DVCS analyses, both coherent and
incoherent. Their missing energy distributions are shown in Figure 3.40 before and after these π0-
based IC photon energy corrections. One sees that correcting few percent deviations of π0 mass
from the true mass caused few hundreds MeV shifts in missing energy of the DVCS events. This
large shift in missing energy is due to the fact that the corrections are measured in the range of
Eγ available in the IC from π0 → γγ decays, which is about 0.8 to 2.5 GeV. To apply the correction
on a photon, its radius is used to get the linear energy dependence, and then that is extrapolated
to the measured energy of the photon. For the DVCS photons, this goes well above the measured
range of photon energies used to derive these corrections, energy range is about 2 to 5 GeV.





Chapter 4

DVCS beam-spin asymmetry extraction

In the previous chapter, the events were filtered to select the ones which have one and only one
good electron, and other good particles in coincidence with the electron. This chapter explains
the procedure we used to extract the beam-spin asymmetry observable following this order:
clean the DVCS data sample by choosing good run list, ensure the exclusivity of the selected
events by imposing the conservation laws, subtract the background by combining data with
simulation, and binning the identified DVCS events. This chapter contains also an estimation of
the systematic uncertainty contribution from each source on the measured beam-spin asymmetry.

In the following, the selection procedures of the coherent DVCS events is detailed and gener-
alized to the cases of incoherent DVCS, the coherent π0, and the incoherent π0 channels.

4.1 Coherent channel

4.1.1 Good run list

In principle, with constant beam luminosity, target density and pressure, the event rate
has to be constant over the experimental time. Due to the changes in the experimental
conditions, such as changing a trigger in a detector, a slight shift in the beam position or a
system failure somewhere, this rate changes. We minimize the effects of these changes on
the reconstructed events by selecting the good runs. To this aim, we monitor the ratio of the
number of the good tracks reconstructed in the RTPC to number of the detected good electrons
in CLAS (<tpc/e>) as a function of run number. Furthermore, we also look at this ratio in the six
sectors of CLAS, as they are independent of each other and their performances might be different.

In this work, after the PID procedures, a run is considered good if:

• The integrated < tpc/e > rate over the six sectors of CLAS is consistent with the neighbor-
ing runs.

• The six sectors show small fluctuations for each run.

Figure 4.1 shows the integrated and the sector-dependence of <tpc/e> for the individual
runs. One notices a universal variation of this ratio over the three months of data taking. This can
be attributed to changes in the RTPC. In particular, we had leaks in our gas system that appeared
during the run. This probably caused gas contamination, changing the properties of the detector.

4.1.2 Coherent DVCS event selection

Events with one and only one good electron, one and only one good RTPC track and at
least one good photon are considered good coherent DVCS candidates. Even though the DVCS
reaction has only one real photon in the final state, events with more than one good photon are
not discarded at this stage. This is motivated by the fact that some photons correspond to random
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Figure 4.1: On the top: The integrated < tpc/e > ratio (over the six sectors of CLAS) for the
individual runs. The blue points refer to the good runs, while the black ones are the rejected
ones. On the bottom: the < tpc/e > ratio is shown for each sector of CLAS. The colored points
indicate the different sectors for each good run, while the black ones are the rejected runs without
color difference between the sectors. In both plots, the experimental setting changes that might
cause a change in the event rate are indicated with vertical colored lines.

coincidences and discarding these events results in losing good events. Then, events with one or
more π0 are removed from the coherent DVCS sample. After that, the most energetic photon
in each remaining event is chosen as the DVCS photon. Next, to consider an event as a clean
4He DVCS, it has to pass respectively two sets of requirements: DVCS characteristic cuts and
exclusivity cuts.
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Figure 4.2: The energy distribution of the simulated coherent, on top, and incoherent, on bottom,
DVCS photons.

DVCS characteristics

• Q2 > 1 GeV2: to ensure that the interaction occurs at the partonic level and the applicability
of the factorization in the DVCS handbag diagram.

• The invariant mass of the system of the virtual photon and the target proton is greater than
2 GeV/c2. This cut avoids the region of excitation of the proton to resonances.

• −t > −tmin: the transferred momentum squared to the recoil 4He has to be greater than a
minimum value defined by the kinematics of the beam and the scattered electron as:

tmin = −Q2 2(1− xA)(1−
√

1 + ε2) + ε2

4xA(1− xA) + ε2 , (4.1)

where ε2 =
4M2

4 He
x2

A

Q2 , xA = Mp·xB
M4 He

and Mp (M4 He) is the proton (4He) mass.

In the case of the proton DVCS, the variable xA is replaced by the Bjorken xB in the formula
for tmin.

• Eγ > 2 GeV. This is a cleaning cut applied to reduce the background in the DVCS sample
as the simulation indicates that no DVCS events are expected with photon energy less than
2 GeV. Figure 4.2 shows the energy distributions of the simulated coherent and incoherent
DVCS events.
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Exclusivity cuts
The coherent DVCS reaction is:

e(Pe) + 4He(P4 He)→ e′(Pe′) + 4He′(P4 He′) + γ(Pγ) (4.2)

where the symbols in the parentheses are the energy-momentum four-vectors. We define the
additional four-vectors:

virtual photon vector (Pγ∗) = Pe − Pe′ (4.3)

Pe4 Heγ
X = Pγ∗ + P4 He − (Pγ + P4 He′) (4.4)

Pe4 He
X = Pγ∗ + P4 He − P4 He′ (4.5)

Peγ
X = Pγ∗ + P4 He − Pγ (4.6)

The exclusivity of the coherent DVCS reaction is ensured by imposing the following con-
servation laws:

• The co-planarity cut (∆φ). In principle, the virtual photon, the emitted real photon and the
recoil helium lie in the same plane, which is called the hadronic plane. Thus the DVCS
events must have ∆φ values around zero. The hadronic plane can be defined in three ways:

−→
HP1 =

−→
P 4 He′ ×

−→
P γ∗ (4.7)

−→
HP2 =

−→
P 4 He′ ×

−→
P γ (4.8)

−→
HP3 =

−→
P γ∗ ×

−→
P γ (4.9)

∆φ is defined to be the φ difference between these planes and is calculable from three com-
binations: (

−→
HP1,

−→
HP2), (

−→
HP1,

−→
HP3) and (

−→
HP2,

−→
HP3). We investigated the three combinations

and we decided to use the second one as it gives better resolution.

• Missing energy, mass and transverse momentum (pT
X =

√
(px

X)2 + (py
X)2) cuts on Pe4 Heγ

X .

• Missing mass cuts on the e4HeX and eγX systems, which are defined as (Pe4 He
X )2 and (Peγ

X )2

respectively.

• Cone angle cut between the measured real photon and the missing particle in the e4HeX
configuration. It is defined as:

θ(γ, e4HeX) = cos−1

( −→
P γ ·

−→
P e4 He

X

|−→P γ ||
−→
P e4 He

X |

)
. (4.10)

Figure 4.3 summarizes all the exclusivity cuts. In these plots, the blue distributions represent
the coherent events after the DVCS characteristic cuts and before all the exclusivity cuts. The
shaded distributions stand for the events which passed all the exclusivity cuts except the one on
the quantity plotted. We fitted each shaded distribution by a Gaussian and then we applied 3σ

cuts around the mean value of each distribution. The events which pass these cuts are assumed
to be good 4He DVCS events.
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Figure 4.3: The coherent DVCS exclusivity cuts. The blue distributions represent the coherent
DVCS events candidate. The shaded distributions represent the events which passed all the
exclusivity cuts except the quantity plotted. The vertical red lines represent 3σ cuts. The missing
momentum in x and y directions in the configuration e4HeγX, are shown for information. The
mean and the sigma values of each quantity can be found in Appendix E, table E.1.

4.1.3 Coherent channel checking

4.1.3.1 Checking 4He PID

In this analysis We claim that kinematic exclusivity cuts are sufficient to cleanly select coherent
4He DVCS events without the need for dE

dx cuts. We performed few checks regarding applying a
PID cut, where the full data was analyzed in the following three sets:

• Processing all the reconstructed tracks in each event with the exclusivity cuts.

• Processing events with only one good track in the RTPC being reconstructed.

• Processing events with only one track that passes a dedx cut.
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Figure 4.4: Distributions of the exclusive variable for the identified DVCS events with only one
track in the RTPC (blue), one track and PID1 is equal to 47 (red), and processing all the tracks in
each event with the exclusivity variables (black).
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Figure 4.5: The integrated coherent beam-spin asymmetries as a function of φ with (red) and
without (blue) applying a PID cut on Helium tracks.

The results are shown in figure 4.4 in terms of the exclusive variables for the identified co-
herent DVCS events. One can see that applying a PID cut would only change the statistics and
not the width of distributions. On the other hand, figure 4.5 shows a comparison between the
reconstructed beam-spin asymmetries with and without applying a PID cut. The two sets of
asymmetries are compatible within the given statistical error bars. From these two observations,
we deduce that a PID cut on the Helium would not reduce any background contribution.

4.1.3.2 Left/Right modules of the RTPC

The two modules of the RTPC have shown different yields in terms of the identified good track,
see Section 3.1.4. This different yields should not affect the DVCS distributions neither the re-
constructed beam-spin asymmetries. In this section, we carry out the analysis for the coherent
channel based on the Left/Right modules of the RTPC to ensure that the reconstructed asym-
metries for the two modules of the RTPC are compatible. Figure 4.6 shows the RTPC module
dependent exclusive distributions for the identified coherent DVCS events. Figure 4.7 shows the
integrated coherent beam-spin asymmetries for the two modules separately, and for the two half
together. To conclude, the two modules of the RTPC show a very similar performances in terms
of the DVCS exclusive distributions and the module-dependent asymmetries are compatible.

4.1.4 Comparison with simulation

Coherent DVCS events were simulated according to the procedures described in section 3.2.1.
Then, events are selected following the same identification criteria as for the experimental data.
Finally, We apply similar exclusivity cuts as presented for the experimental coherent DVCS
events. That is each exclusive distribution is fitted by a Gaussian and a 3σ cut is applied. So
the cut are not identical, but obtained with the same method. This is done to avoid issues on
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Figure 4.6: The distributions of the exclusive variables for the identified coherent DVCS events in
the individual modules of the RTPC, Left module in blue and Right module in red.
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Figure 4.7: The reconstructed integrated-over-full-data beam-spin asymmetries as a function of
the hadronic angle φ in the two modules of the RTPC separately, and the integrated signal over
the whole RTPC.

variables where the peak is not in the exact same place in simulation and in data.

Figure 4.8 shows the comparison between the experimental and the simulated DVCS events
as a function of the kinematic variables: Q2, xB, −t, and φ. Figure 4.9 shows the comparison as a
function of the quantities used for the exclusivity cuts. The distributions in the latter two figures
show a satisfying match between the experimental and the simulated data.
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Figure 4.8: Comparison between the simulated e4Heγ DVCS events (in red lines) and the exper-
imental DVCS events (in shaded blue) as a function of the kinematic variables: Q2, xB, −t, and
φ.
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Figure 4.9: Comparison between simulated and experimental e4Heγ DVCS events. The distribu-
tions from left to right and from top to bottom are: Co-planarity cut, missing energy, missing
mass squared and missing transverse momentum in the configuration of detecting all the three
final-state particles, missing mass squared in the e4HeX and eγX configurations respectively. The
vertical black lines indicate the theoretically expected value for each quantity.
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4.2 Incoherent channel

In this channel, the DVCS process happens on a bound proton. Thus, the final state has a
recoil proton instead of the helium nucleus. Therefore, events with one good electron, one recoil
proton, and at least one real photon are the good candidates here. For the rest, we follow the
same steps that were introduced for the coherent DVCS selection.

4.2.1 Good run list

The events rate stability is verified by looking at the rate of the detected number of protons
to the detected electrons (<p/e>). Like for the coherent channel, the same technique for the
determination of the good run list is followed herein. The results are presented in figure 4.10.

Figure 4.10: On the top: the integrated <p/e> ratio as a function of run number. The blue points
refer to the good runs, while the black points are the rejected ones. On the bottom: the same ratio
for each run, is shown for each sector of CLAS. The colored points indicate the six sectors, while
the black points are the sectors of the rejected runs.



4.2. Incoherent channel 85

4.2.2 Proton DVCS event selection

To certify that an event is a proton DVCS one, we require the same DVCS kinematic cuts as
those presented for the coherent DVCS selection. Then, the exclusivity of the DVCS reaction is
ensured by applying an equivalent set of exclusivity with taking a proton at rest as the target,
instead of 4He. Figure 4.11 summarizes these exclusivity cuts.

Figure 4.11: The incoherent DVCS exclusivity cuts. The blue distributions represent all the events
with one good electron, one good proton, and at least one photon in the IC. The shaded brown
distributions show the incoherent DVCS events which passed all the exclusivity cuts except the
one on the quantity drawn. The distributions from left to right and from top to bottom are:
the proton-photon coplanarity, the missing energy, missing mass squared, missing transverse
momentum from epγX, the missing mass squared epX and the missing mass squared eγX, the
angle between the missing particle in epX and the measured photon, the missing Px and Py in
epγX. The vertical red lines represent 3σ cuts. The mean and sigma values of each shaded
distribution are listed in table E.3.
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4.2.3 Comparison with simulation

The three particles of the simulated epγ DVCS events are selected applying the previously
described identification requirements. The events with three identified particles (e, p, γ) are
required to pass a set of exclusivity cuts such as the ones of the experimental incoherent DVCS
events. In this section, a comparison between the experimental and the simulated data is carried
out.

Figure 4.12 shows the comparison between the simulated (red lines) and the experimental
(shaded blue) incoherent DVCS events as a function of the four kinematic variables: Q2, xB, −t,
and φ. Figure 4.13 shows the comparison as a function of the variables used to select exclusive
DVCS events.

Figure 4.12: Comparison between the Monte-Carlo simulated epγ DVCS events (red lines) and
the experimental ones (blue shaded distributions) in terms of the kinematics: Q2, xB, −t, and φ,
respectively from left to right and from top to bottom.
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Figure 4.13: Comparison between simulated and experimental epγ DVCS events in terms of the
variables used for exclusivity cuts. The vertical black lines indicate the theoretically expected
values for each exclusive quantity.
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4.3 Kinematic coverages

The one-dimensional distributions of explored kinematical regions can be seen in figure 4.8
for the coherent, and in figure 4.12 for the incoherent DVCS channels. In figure 4.14, we show
two-dimensional distributions of these variables to display the correlations between them.

Figure 4.14: The distributions of the identified coherent DVCS are on the left panel, while on the
right are the incoherent ones. On the top panel: Q2 as a function of xB with W and fixed −tmin
value cuts in Q2 − xB plane. On the middle panel: −t as a function of Q2. On the bottom panel:
−t as a function of φ.
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4.4 Data binning

The DVCS cross section and ALU , equations 1.4 to 5.1, depend on the four kinematic variables:
Q2, xB, t, and φ. The number of identified coherent (incoherent) DVCS events is about 5000 (30k).
Due to our limited statistics only, a two-dimensional binning is carried out in this analysis. The
strongest dependence of ALU is on the azimuthal angle between the leptonic and the hadronic
planes (φ). Thus, we construct the two-dimensional bins as follows: the coherent (incoherent)
measured ranges of Q2, xB and −t are binned statistically into three (four) bins. Then, the identi-
fied DVCS events in each Q2, xB and −t bin, are binned into nine bins in φ. Therefore, we are left
with Q2-φ bins integrated over the full ranges of xB and −t, xB-φ bins integrated over Q2 and −t,
and −t-φ bins integrated over Q2 and xB. For instance, figure 4.15 shows the one-dimensional
bins in Q2 and the associated bins in φ.

Figure 4.15: On the top: the Q2 distribution of the collected coherent DVCS events. The different
colors indicate the different bins in Q2 integrated over the full ranges of −t and xB. On the
bottom: the φ distributions of the coherent DVCS events for the bins in Q2, which are shown in
the top plot. The different colors in each φ distribution represent the nine bins in φ.
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4.5 Background subtraction

4.5.1 π0 contaminations

Even with all cuts applied to select the selected DVCS events, the events are not all DVCS events.
In our kinematic region, the main contamination comes from the exclusive electroproduction of
π0 (e4He → e4Heπ0 → e4Heγγ, ep → epπ0 → epγγ), in which one of the two photons of the π0

decay passes the requirements of the DVCS. Thus, the event is counted as a DVCS event. These
events contaminate the DVCS sample and have to be subtracted to obtain the true number of
DVCS events. In the case of the coherent channel, this can be formulated as:

NTrue
e4 Heγ = NExp.

e4 Heγ
− NExp.

e4 Heπ0(γ), (4.11)

where NTrue
e4 Heγ

, NExp.
e4 Heγ

and NExp.
e4 Heπ0(γ) are the true number of coherent DVCS events, the experi-

mentally measured number of e4Heγ events and the contamination number, respectively. The
contamination can be calculated by using real data and simulation. We define, for each kinematic
bin and for each beam helicity state

NExp.
e4 Heπ0(γ) =

NSim.
e4 Heπ0(γ)

NSim.
e4 Heπ0(γγ)

∗ NExp.
e4 Heπ0(γγ), (4.12)

where NExp.
e4 Heπ0(γγ) is the number of measured e4Heπ0 events, for which both photons of the

π0 have been detected. The quantity
NSim.

e4 Heπ0(γ)

NSim.
e4 Heπ0(γγ)

is the acceptance ratio for detecting a e4Heγ

event that originates from an e4Heπ0 event. It can be derived from Monte-Carlo simulations by
generating and simulating e4Heπ0. NSim.

e4 Heπ0(γ) is the number of such events passing the DVCS

requirements, while NSim.
e4 Heπ0(γγ) is the number of simulated e4Heπ0 events passing the exclusivity

cuts for e4Heπ0 events.

The previous formulas apply to the case of the coherent DVCS. The same procedures hold
for the incoherent case by replacing the 4He with the proton.

The selection of the exclusive e4Heπ0 and epπ0 events requires the detection of one good
electron, one good π0 in the topology ICIC or ICEC, and one good 4He track in the coherent
case, or one good proton in the incoherent case. In order to ensure that this is a deep process, we
apply the same kinematic cuts as DVCS. These cuts and the comparisons with simulation can be
found in Appendix D.

Figure 4.16 shows the coherent acceptance ratio as a function of each of the four kinematic
variables (Q2, xB, −t, φh). These distributions are one-dimensional, i.e. the data are integrated
over all kinematical ranges except for the quantity which is binned (along the x-axis). The results
for the incoherent channel can be found in figure 4.17. The mean value of the acceptance ratio
for the coherent channel is around 25%, with some dependence on xB and φ, and almost no
dependence on Q2 and −t. For the incoherent channel, the mean acceptance ratio is around 20%
with some dependence on the four kinematic variables.

As presented in the previous section, we construct two-dimensional bins: Q2-φ, xB-φ and -t-φ.
Thus, for each bin in Q2, xB and −t, we assume that the acceptance ratio does not change a lot
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Figure 4.16: The coherent channel acceptance ratios as a function of the kinematic variables: Q2

(top left), xB (top right), −t (bottom left), and φ (bottom right).

within the bin range and we construct the one-dimensional acceptance ratio as a function of φ.
The latter is used to perform the background subtraction as shown in equations 4.11 and 4.12.

4.5.2 Accidental contaminations

The ∆z distributions between the recoil hadrons and the scattered electrons, see figures 3.23
and 3.11, indicate that accidental background events are contributing inside the exclusive DVCS.
In order to estimate and correct this background contribution, we processed our dataset with
the previously presented exclusive requirements without any constraints on the z-vertex of the
final state particle nor on the correspondence between them, ∆z. The results for the identified
coherent DVCS events are presented in figure 4.18. This guides us to correct for these accidentals
in our asymmetries in the form: ALU corr. = 1

1−contamination ALU , with a 4.1% global accidental
contamination for the coherent DVCS channel (see numbers in table 4.1). The same procedures
were performed on the incoherent channel, and a global contamination of 6.5% has been observed.
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Figure 4.17: The incoherent channel acceptance ratios as a function of the kinematic variables: Q2

(top left), xB (top right), −t (bottom left), and φ (bottom right).

Figure 4.18: The z-vertex correspondence between the scattered electron and the recoil 4He for the
identified coherent DVCS events after the exclusivity cuts in the two modules of the RTPC sepa-
rately without any initial constrains on z-vertices of the individual particles. Table 4.1 summarizes
the cut numerically.
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Number of coherent DVCS events
∆z [mm] Left module Right module
[-50:-30] 42 77
[-20:20] 2741 2856
[30:50] 34 78
Contamination percentage 2.7% 5.4%

Table 4.1: The numbers of the identified coherent DVCS events in the different regions in ∆z for
the two modules of the RTPC.

4.6 Statistical uncertainties

In terms of the collected number of events in each beam-helicity state (N+, N−), ALU can be
expressed as:

ALU =
1

PB

N+ − N−

N+ + N−
. (4.13)

where PB is the beam polarization, N+ and N− are the background-subtracted yields of DVCS
events. The statistical uncertainties on the measured ALU can be derived as:

∆A =
1

PB

√(
∂A

∂N+

)2

(∆N+)2 +
(

∂A
∂N−

)2

(∆N−)2 =
1

PB

√
(2N−∆N+)2 + (2N−∆N+)2

(N+ + N−)4 , (4.14)

where N+ and N− are
N± = N±e4 Heγ

− R N±e4 Heπ0 , (4.15)

and R is the calculated background acceptance ratio from the simulation. The statistical uncer-
tainty on the counts (N±) is

(∆N±)2 = (∆N±e4 Heγ
)2 + (R ∆N±e4 Heπ0)2 = N±e4 Heγ

+ R2N±e4 Heπ0 . (4.16)

The errors on PB and R are not considered statistical errors. They contribute in the systematic
uncertainties, as will be discussed in the following section. This derivation is valid for the coherent
and the incoherent DVCS channels.

4.7 Systematic uncertainties

It is particularly convenient to use the ALU as a DVCS observable, because most of the exper-
imental systematic uncertainties, such as normalization and efficiencies that appear in the cross
sections cancel out in the asymmetry ratio. However, some sources still affect this asymmetry
and contribute in the systematic uncertainties on the measured ALU . The main known sources
of systematic errors are: the DVCS selection cuts, the fitting sensitivity to our binning, the beam
polarization, the background acceptance ratio and the radiative corrections. In the following, we
present an estimation of the contribution from each source.

DVCS selection cuts

In order to evaluate the systematic uncertainties stemming from the DVCS selection cuts, the
analysis was repeated changing cuts. As it can be seen in figure 4.3, the 3σ cuts cover up to
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97% of the events in all the distributions except the e4Heγ missing mass distribution. In order to
investigate the effect of taking different cuts on the reconstructed ALU , we fix the 3σ cuts on all
the exclusive quantities except for the cut on e4Heγ missing mass. For the incoherent channel,
the same procedure is carried out on the epγ missing mass distribution. The results can be seen
in figure 4.19. The maximum variation that has been observed on the ALU observable between

3σ cut and the other cuts ( ∆Asys.cuts
LU

ALU
) is equal to 8% for the coherent channel and to 6% for the

incoherent channel at φ = 90◦ extracted from a fit, in the form of αsin(φ)
1+βcos(φ)+ηcos(2φ) , to ALU(φ)

distribution. The fit parameters are plotted as functions of the cut widths in figures 4.20 to 4.24.

Fitting sensitivity to our binning

In order to evaluate how sensitive are the fit results to our binning, we binned the data into
11 bins in φ and we compared the reconstructed asymmetries to the results from our 9 binning.
Figure 4.25 shows the coherent reconstructed ALU as a function of φ in Q2, xB and −t bins. The
coherent, figure 4.26, and the incoherent, figure 4.27, measured ALU at φ = 90◦ are showing an
overall average of 5.1% and 7.1% systematic uncertainties respectively, which will be added to
our estimated uncertainties for the extracted asymmetries at φ = 90◦.

Beam polarization

The beam polarization has been measured regularly during the CLAS-EG6 data taking period
by using the Hall B Møller polarimeter. This polarimeter measures the angular distribution of
the Møller electrons to obtain the beam polarization. Figure 4.28 shows the Møller measurements
taken during the EG6 experiment. A linear fit to these measurements yields a mean polarization
value of 0.8367. The precision of the Hall B Møller polarimeter ( ∆P

P ) was measured to be around
3.5% [42]. We asume therefore a 3.5% systematic uncertainty on the measured asymmetries

( ∆Asys.p
LU

ALU
= ∆P

P ).

Acceptance ratio

Predominantly, two techniques are used to estimate the systematic uncertainty associated
with the calculated acceptance ratio (R). The first is via repeating the analysis by implementing
R differently, while the second technique is by using two generating models to calculate R.

Both methods were investigated in this work. Regarding the first method, the analysis was
repeated by taking three different values for R: 0.8*R, R and 1.2*R. The beam-spin asymmetries
at φ = 90◦ were extracted and compared, see figure 4.29. A maximum variation of 2% (0.6%) has
been observed on the incoherent (coherent) ALU at φ = 90◦.

For the second technique, in fact there is only one event generator available, presented in
section 3.2.1. Nevertheless, one can still use this method by generating events with or without the
cross section parametrization. In the absence of the parametrization, the generated events are flat
in the four kinematic variables (Q2, −t, xB, φ). The calculated coherent and incoherent acceptance
ratios (R) with and without the cross section parametrization are shown in figure 4.30. One can
see that the difference between the calculated acceptance ratios is almost constant. Thus, we can
conclude that the first method of taking ±20% on R is is an adequate way to obtain an estimation
of the systematic uncertainty associated to the calculated acceptance ratios.
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Figure 4.19: The systematic uncertainties stemming from the DVCS selection cuts in the coherent
(left column) and the incoherent (right column) channels. On the top: the missing mass squared
of e4Heγ and epγ. The different vertical coloured lines indicate the different cuts: 1σ, 2σ, ... 5σ. In
the middle: the coherent (incoherent) acceptance ratios versus φ for the different configurations
of the cuts. On the bottom: the reconstructed ALU as a function of φh for the different cut widths.

Radiative corrections

In this analysis, we have assumed that the beam-spin asymmetry arises from the leading
twist DVCS amplitude and its interference with the BH process. However, there are higher-order
electromagnetic corrections which can affect the beam-spin asymmetry. Andrei V. Afanasev
and his collaborators have estimated the corrections to ALU which arise from such effects in
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Figure 4.20: The coherent (left) and incoherent (right) α parameter of the fits as a function of cut
width.

Figure 4.21: The coherent (left) and incoherent (right) β parameter of the fits as a function of cut
width.

Figure 4.22: The coherent (left) and incoherent (right) η parameter of the fits as a function of cut
width.
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Figure 4.23: The coherent (left) and incoherent (right) χ2 parameter of the fits as a function of cut
width.

Figure 4.24: The coherent (left) and incoherent (right) beam-spin asymmetry at φ = 90◦.
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Figure 4.25: The measured coherent beam-spin asymmetry as a function of φ in Q2, xB and −t
bins, using two binning sets in φ: 9 bins (in blue) and 11 bins (in red).
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Figure 4.26: The coherent ALU(φ = 90◦), from the fit, as a function of Q2, xB and −t, using 9 (in
blue) and 11 (in red) bins in φ.

Figure 4.27: The incoherent ALU(φ = 90◦), from the fit, as a function of Q2, xB and −t, using 9 (in
blue) and 11 (in red) bins in φ.
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Figure 4.28: Beam polarization measurements during the CLAS-EG6 running period. The red
squares are the measurements with a negative current in the Helmholtz coils of the Møller po-
larimeter and the purple triangles are these with a positive current. The figure is taken from
[36].

Figure 4.29: The extracted beam-spin asymmetries at φ = 90◦ as a function of three sets of
the calculated acceptance ratios: 0.8*R, 1.0*R and 1.2*R, for the coherent (on the left) and the
incoherent (on the right) DVCS channels.
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Figure 4.30: The coherent (on the top) and the incoherent (on the bottom) acceptance ratios (R) as
function of the angle φ. In both plots, the blue (red) points are the ratios with (without) the cross
section parametrization.

a model-independent way [43]. They have performed one-loop corrections on the outgoing
electron as only the radiation from it affects the ALU . They found that the correction does
not exceed 0.1% at a 4.25 GeV electron beam energy and Q2=1.25 GeV2. In our case, as the
radiative emission is inversely proportional to the mass of the radiating particle, the helium
and the proton contributions are negligible compared to the leptonic one. Therefore, we can
still take the result of Afanasev as a good estimation for the radiative effects on our measured ALU .

Systematic uncertainty summary

The total systematic uncertainty is the quadratic sum of the previously described individ-
ual uncertainties. Table 4.2 summarizes the sources of systematic uncertainty and their
contributions on the measured ALU at φ = 90◦, that will be added quadratically to the statistical
uncertainties on ALU .

Systematic source Coherent channel Incoherent channel Type of systematic error
DVCS cuts 8 % 6 % bin to bin
Data binning 5.1% 7.1% bin to bin
Beam polarization 3.5% 3.5% Normalization
Acceptance ratio 0.6% 2.0% bin to bin
Radiative corrections 0.1% 0.1% bin to bin
Total 10.1% 10.1% bin to bin

Table 4.2: The systematic uncertainties on the measured coherent and incoherent beam-spin
asymmetries at φ = 90◦.
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Results and physics interpretations

In this chapter, we present our results after all corrections discussed above and including all
systematic errors. In order to discuss these results, we first present the functional forms we will
use to fit them, which are different for the coherent and incoherent channels. For the coherent
channel, we use exact formula from [38] to extract the real and imaginary parts of the CFF HA at
twist-2. For the incoherent channel, we use a simplified form and only extract the asymmetry at
90◦. Then we present the beam-spin asymmetry measurements for both DVCS channels with their
aforementioned fits and draw some first conclusions. Finally we present ratios of our asymmetry
to free proton results from CLAS (E1-DVCS part-1 [38, 48]).

5.1 Fitting the beam-spin asymmetry

For a spin-zero target at leading twist, the beam-spin asymmetry (ALU) can be expressed as
follow [4]

ALU(φ) =
α0(φ)=m(HA)

α1(φ) + α2(φ)<e(HA) + α3(φ)
(
<e(HA)2 +=m(HA)2

) (5.1)

where =m(HA) and <e(HA) are the imaginary and real parts of the CFF HA associated to the
GPD HA. The αi’s are φ-dependent kinematical factors that depend on the nuclear form factor FA
and the independent variables Q2, xB and t. These factors are simplified as:

α0(φ) =
xA(1 + ε2)2

y
S++(1) sin(φ) (5.2)

α1(φ) = cBH
0 + cBH

1 cos(φ) + cBH
2 cos(2φ) (5.3)

α2(φ) =
xA(1 + ε2)2

y
(C++(0) + C++(1)cos(φ)) (5.4)

α3(φ) =
x2

At(1 + ε2)2

y
P1(φ)P2(φ) · 2

2− 2y + y2 + ε2

2 y2

1 + ε2 (5.5)

Where S++(1), C++(0), and C++(1) are the Fourier harmonics in the leptonic tensor. Their
explicit expressions can be found in Appendix A.

Using the αi factors, one can obtain in a model-independent way =m(HA) and <e(HA) from
fitting the experimental ALU as a function of φ for given values of Q2, xB and t. Equation 5.1 is
the functional form we use to fit the coherent asymmetries presented in this analysis.

Regarding the incoherent channel, the beam-spin asymmetry signals will be fitted by the
simple form α sin(φ)

1+β cos(φ) , which has been used for DVCS on free proton, see reference [38, 48], and

allows an easy extraction of A90◦
LU .
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5.2 Beam-spin asymmetry results and fit

In this section, the beam-spin asymmetries will be compared to the theoretical calculations
based on the two models that were presented in section 1.1.2.

5.2.1 Coherent beam-spin asymmetry

Figure 5.1 shows the coherent ALU for the three sets of two-dimensional bins. The asymmetries
are fitted with the form of equation 5.1, where the real and the imaginary part of the CFF HA are
the free parameters in the fit.

Figure 5.2 shows the Q2, xB, and −t-dependencies of the α term of ALU . The xB and
−t-dependencies are compared to theoretical calculations performed by S. Liuti and K. Taneja.
Their model relies on the impulse approximation and uses advanced spectral function of the
nuclei to calculate the nuclear GPDs and then the observables. The calculations were carried out
at slightly different kinematics than ours but provide already some guidance. The experimental
results appear to have larger asymmetries compared to the calculations. These differences may
arise from nuclear effects which are not taken into account in the model, such as long-range
interactions [16]. Our measurements also agree with those of HERMES, considering their large
uncertainties.

5.2.2 Incoherent beam-spin asymmetry

Figure 5.3 shows our measured incoherent beam-spin asymmetries, for the three sets of the
two-dimensional bins as for the coherent channel. The Q2, xB, and −t-dependencies of ALU at
φ= 90◦ (the α parameter of the fit) are shown in figure 5.4.

The theoretical calculations from S. Liuti and K. Taneja are carried out at slightly different
kinematics than our experimental measured values. Nevertheless, one can see that our incoherent
asymmetries are not well described by these calculations. For instance, in the top right plot of
figure 5.4, even though our asymmetries (at −t = 0.2 GeV2/c2) are located between the model’s
predictions, which are carried out at −t = 0.095 and 0.329 GeV2/c2, they do not show the drop
in < xB >, as the model predicted. Similar observation can be seen as a function of −t from the
bottom plot.

5.3 Helium GPD

As shown at the beginning of this chapter, one can extract both real and imaginary parts of
the 4He CFF HA from fitting the beam-spin asymmetry signals. This extraction is fully model
independent and, in contrast with the proton’s GPD extraction, does not make any assumption
on additional GPDs. In this work, we performed the first experimental extraction of HA from
exclusive measurements of the reaction. The results are presented in figure 5.5 as function of Q2,
xB, and −t.
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Figure 5.1: The coherent ALU as a function of φ and Q2 (top panel), xB (middle panel), and
−t (bottom panel) bins. The blue error bars represent the statistical and the systematic uncertain-
ties, added quadratically, shown on the top of green error bars representing only the statistical
uncertainties. The brown bands represent the full systematic uncertainties, including the normal-
isation systematic uncertainties. The red curves represent fits in the form of equation 5.1.
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Figure 5.2: The Q2-dependence (on the top), the xB-dependence (on the middle), and the t-
dependence (on the bottom) of the fitted coherent ALU signals at φ= 90◦ (black squares). On
the middle: the red and the blue curves are theoretical predictions from [16] at two values of
−t. On the bottom: the green circles are the HERMES −ALU (positron beam was used) inclusive
measurements [18], and the colored curves represent theoretical predictions from [16].



5.3. Helium GPD 107

Figure 5.3: The incoherent ALU as a function of the angle φ in Q2, xB, and −t bins, respectively
from top to bottom. See the caption of figure 5.1 for the color indications. The red lines represent
fits to the α sin(φ)

1+βcos(φ) function.
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Figure 5.4: The Q2 (top), xB (middle), and −t-dependencies (bottom) of the incoherent ALU at
φ = 90◦ (black squares). Middle panel: the red and the blue curves are theoretical calculations
from [16]. On the bottom: the green circles are the HERMES −ALU (positron beam was used)
inclusive measurements [18], the colored curves represent theoretical calculations from [16].
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The results show significant trends on Q2, xB, and −t. More work is needed on the theoretical
models to give predictions forHA. One can see a difference between the precision of the extracted
real and imaginary parts, indicating the fact that the beam-spin asymmetry is mostly sensitive to
the imaginary part of the CFF HA.

Figure 5.5: The model-independent extraction of the imaginary (blue points) and real (red points)
parts of the 4He CFF HA, as functions of Q2 (on the top right), xB (on the top left), and t (on the
bottom).

5.4 Generalized EMC ratios

Comparing our measured DVCS channels to the free-proton DVCS reaction allows us to in-
vestigate the nuclear medium effects at the GPD level. For this we use analyzes performed on
free-proton with the DVCS data sets taken by the CLAS collaboration, during the E1-DVCS ex-
periment (parts 1 and 2). The results of part 1 are already published [38, 39]. Herein, our coherent
and incoherent beam-spin asymmetries are compared to the results of free proton asymmetries
from this publication.

The explored kinematical ranges of Q2, xB and −t of the free-proton data are similar to the
ones of the incoherent channel, and the two data sets were recorded using similar electron-beam
energies and experimental setup. Therefore, we construct ALU ratios based on choosing the free
proton bins which have similar Q2, xB and −t values as our bins. The incoherent ALU ratios at
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φ = 90◦ are shown in figure 5.6 as functions of Q2, xB, and −t, along with theoretical predictions
at similar kinematical values.

Overall the ALU ratios, one can see that the bound protons have 20-40% smaller beam
spin asymmetries than the free protons. These measurements disagree with the enhancement
predicted by the simple impulse approximation of V. Guzey [14], as can be seen in chapter 1,
figure 1.5. The calculations of S. Liuti and K. Taneja [16] also overshoot the data indicating
a trend. In particular, the anti-shadowing region seems to be absent in terms of the ALU

ratio, while it was predicted by the calculation. Before to draw any strong conclusions on the
structure of bound protons, it remains to be understood what parasitic effects can create such a
decrease. In particular, final state interactions need to be evaluated, as they could dilute the signal.

More attention is needed in constructing the coherent ALU ratio between 4He and the free
proton. One can see from figure 4.14 that the coherent experimental ranges of Q2, xB and −t
are limited compared to the incoherent channel especially in the −t-domain. The latter is due
to the fact that the nuclear form factor of the 4He has a steeper drop in −t than the nucleonic
one. Our coherent DVCS data set was binned in 3 bins in Q2 to show Q2-dependence of the
coherent ALU ratio. Similar procedures were performed to shows the xB-dependence. For
the dependence on −t, the data are integrated to one bin to optimize a more precise ratio.
The results are presented in figure 5.7 along with the available theoretical predictions for
this ratio. Our measurements shows a nuclear beam-spin asymmetry enhancement compared
to the free proton. The measured ratios are not matching the measurement of HERMES
collaboration [18], pausing the question of weather they actually measured coherent DVCS.
It is also in conflict with the calculations of Liuti and K. Taneja [16], which is missing the
large observed increase. On the other hand, our measurements seems to agree with the
enhancement predicted by V. Guzey [44]. Moreover, A. Kirchner and D. Mueller (KM model) [3],
using their formalism of GPDs factorization, have predicted a beam-spin asymmetry ratio of 1.4
(0.35/0.25) for all different spin-zero nuclei at xB= 0.3, Eb= 6GeV, -t= 0.25 GeV2, and Q2= 2.5 GeV2.
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Figure 5.6: The ALU ratio between the bound and the free proton at φ = 90◦, as a function of Q2

(on the top), xB (on the middle), and t (on the bottom). The black squares are our results, the
green circles are the HERMES inclusive measurement [18] results. The blue and red curves are
from an on-shell calculations from S. Liuti and K. Taneja [16].
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Figure 5.7: The ALU ratio between 4He and free proton at φ = 90◦, as a function of Q2 (on the top),
xB (on the middle), and −t (on the bottom). The black squares represent the results of this work
and the green circles are the HERMES measurements [18]. These measurements are compared
to theoretical predictions from S. Liuti and K. Taneja [16], the red and the blue curves, and the
model predictions from V. Guzey et al. based on the off-shell calculations [44], in black, purple
and brown dashed curves.



Appendix A

e 4He→ e 4He γ cross section

The differential cross section for a longitudinally-polarized electron beam (λ) and an unpolarized
4He target can written as:

d5σλ

dxAdQ2dtdφedφ
=

α3

16π2
xA y2

Q4
√

1 + ε2

|TBH |2 + |T λ
DVCS|2 + Iλ

BH∗DVCS
e6 (A.1)

where y = p·q
p·k , ε = 2xA MA

Q and xA = Q2

2p·q . The different amplitudes can be written as [4]:

|TBH |2 =
e6(1 + ε2)−2

x2
Ay2tP1(φ)P2(φ)

[
cBH

0 + cBH
1 cos(φ) + cBH

2 cos(2φ)
]

(A.2)

|TDVCS|2 =
e6

y2Q2

[
cDVCS

0 +
2

∑
n=1

(
cDVCS

n cos(nφ) + λsDVCS
n sin(nφ)

)]
(A.3)

IBH∗DVCS =
±e6

xAy3tP1(φ)P2(φ)

[
cI

0 +
3

∑
n=0

(
cI

n cos(nφ) + λsI
n sin(nφ)

)]
(A.4)

where P1(φ) and P2(φ) are BH propagators and defined as:

P1(φ) =
(k− q′)2

Q2 = − 1
y(1 + ε2)

[
J + 2K cos(φ)

]
(A.5)

P2(φ) =
(k− ∆)2

Q2 = 1 +
t

Q2 +
1

y(1 + ε2)
[

J + 2K cos(φ)
]

(A.6)

with,

J =
(

1− y− yε2

2

)(
1 +

t
Q2

)
− (1− xA)(2− y)

t
Q2 (A.7)

K2 = −δt (1− xA)
(

1− y− y2ε2

4

){√
1 + ε2 +

4xA(1− xA) + ε2

4(1− xA)
δt
}

(A.8)

δt =
t− tmin

Q2 =
t

Q2 +
2(1− xA)

(
1−
√

1 + ε2
)

+ ε2

4xA(1− xA) + ε2 (A.9)

where tmin represents the kinematic boundary of the process and defined as:

tmin = Q2 2(1− xA)(1−
√

1 + ε2) + ε2

4xA(1− xA) + ε2 (A.10)
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The Fourier coefficients, in equations A.2, A.3 and A.4, of a spin-0 target are defined as:

cBH
0 =

[ {
(2− y)2 + y2(1 + ε2)

2
}{ ε2Q2

t
+ 4(1− xA) + (4xA + ε2)

t
Q2

}
+2ε2

{
4(1− y)(3 + 2ε2) + y2(2− ε4)

}
− 4x2

A(2− y)2(2 + ε2)
t

Q2

+8K2 ε2Q2

t

]
F2

A(t) (A.11)

cBH
1 = −8(2− y)K

{
2xA + ε2 − ε2Q2

t

}
F2

A(t) (A.12)

cBH
2 = 8K2 ε2Q2

t
F2

A(t) (A.13)

where FA(t) is the electromagnetic form factor of the 4He. At leading twist, the |TDVCS|2 writes
as a function of only one CFF according to

cDVCS
0 = 2

2− 2y + y2 + ε2

2 y2

1 + ε2 HAH?
A (A.14)

and the interference amplitude coefficients are written as:

sINT
1 = FA(t)=m(HA)S++(1), (A.15)

with

S++(1) =
−8K(2− y)y

1 + ε2

(
1 +

1− xA +
√

1+ε2−1
2

1 + ε2
t− tmin

Q2

)
· FA(t) (A.16)

cINT
0 = FA(t)<e(HA)C++(0), (A.17)

with

C++(0) =
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with

C++(1) =
−16K(1− y + ε2

4 y2)
(1 + ε2)5/2

{(
1 + (1− xA)

√
1 + ε2 − 1

2xA
+

ε2

4xA

)
xAt
Q2 −

3ε2

4.0

}

− 4K
(

2− 2y + y2 +
ε2

2
y2
)

1 +
√

1 + ε2 − ε2

(1 + e2)5/2

{
1− (1− 3xA)

t
Q2

+
1−
√

1 + ε2 + 3ε2

1 +
√

1 + ε2 − ε2

xA ∗ t
Q2

}
(A.20)



Appendix B

The parametrizations for the RTPC

• The parametrizations of the mean (µ) and the width (σ) of ∆z distributions shown in figure
3.23, with L and R stand for the left and the right modules of the RTPC, and z in mm:

µL
∆z(z) = 2.80051− 0.0624556 ∗ z + 0.00035567 ∗ z2 + 5.25789e− 06 ∗ z3 (B.1)

σL
∆z(z) = 7.48614− 0.00776678 ∗ z− 3.66892e− 05 ∗ z2 (B.2)

µR
∆z(z) = −3.85725− 0.061265 ∗ z + 0.000324528 ∗ z2 + 4.28801e− 06 ∗ z3 (B.3)

σR
∆z(z) = 8.67335− 0.00975138 ∗ z + 8.01378e− 05 ∗ z2 (B.4)

• The parametrizations of the mean (µ) and the width (σ) of ∆φ distributions shown in figure
2.12 are:

µL
∆φ(z) = 178.053 + 0.0298072 ∗ z− 0.000362634 ∗ z2 − 2.32442e− 07 ∗ z3 (B.5)

σL
∆φ(z) = 2.00365 + 0.0011081 ∗ z + 4.1589e− 05 ∗ z2 − 2.95347e− 07 ∗ z3 (B.6)

µR
∆φ(z) = 181.3 + 0.00749361 ∗ z− 0.000338728 ∗ z2 + 6.37882e− 06 ∗ z3 (B.7)

σR
∆φ(z) = 2.0939 + 9.59331e− 05 ∗ z + 2.16727e− 05 ∗ z2 − 5.69296e− 08 ∗ z3 (B.8)

• The parametrizations of the mean (µ) and the width (σ) of ∆θ distribution shown in figure
2.13 are:

µ∆θ(z) = −1.02349− 0.0487393 ∗ z + 0.000219641 ∗ z2 + 3.84156e− 06 ∗ z3 (B.9)

σ∆θ(z) = 3.57854 + 0.00639663 ∗ z (B.10)
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• The drift speed parametrization:

Figure B.1: The fit parameters: p0, p1, p2, and p3 for the individual runs. The red lines represent
their piece-wise fits.

TDCmax/2(z) = p0 + p1 ∗ ep2∗(z−p3)2
(B.11)
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run range p0 p1
p2 p3

61448 - 61481 1.14312e+03 - 1.75217e-02 *rN 3.27339e+00 + 5.32577e-05 *rN
-7.55131e-02 + 1.22429e-06 *rN 3.76627e+03 - 6.14148e-02 *rN

61483 - 61611 1.21405e+02 - 9.40705e-04 *rN 3.89644e+00 + 6.33813e-05 *rN
4.09308e-03 - 6.97839e-08 *rN -9.04583e+02 + 1.45062e-02 *rN

61612 - 61646 1.39733e+03 - 2.16496e-02 *rN -3.07845e+02 + 5.10814e-03 *rN
-8.23774e-02 + 1.33384e-06 *rN -9.05752e+02 + 1.44872e-02 *rN

61655 - 61779 1.45093e+02 - 1.33438e-03 *rN 1.63746e+02 - 2.54273e-03 *rN
-5.10501e-04 + 5.64359e-09 *rN 4.26282e+02 - 7.12408e-03 *rN

61791 - 61930 2.18243e+02 - 2.51495e-03 *rN 4.92691e+01 - 6.90443e-04 *rN
-1.11909e-02 + 1.78407e-07 *rN 4.26297e+02 - 7.12383e-03 *rN

61931 - 61961) 2.18152e+02 - 2.51641e-03 *rN 4.92921e+01 - 6.90070e-04 *rN
-1.11766e-02 + 1.78639e-07 *rN 4.23668e+02 - 7.16628e-03 *rN

Table B.1: The parameters of TDCmax/2 used in EG6 experiment reconstruction codes.

• Drift paths’ parametrization:

∆φ(TDC, z) =
4

∑
i=0

pi(z) ∗ TDCi (B.12)

Parameter constant *z *z2

p0 0.14222 -6.52562e-05 4.06768e-06
p1 -0.00147368 5.64924e-06 -7.31944e-07
p2 0.000216222 6.25749e-09 1.8923e-08
p3 -3.82450e-06 -6.29825e-09 -1.89627e-10
p4 3.22973e-08 7.52017e-11 1.08564e-12

Table B.2: The drift paths extracted in the EG6 experiment.
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The parametrization of the IC-photons
energy corrections

• α parametrization α(x) = c0 + c2

[
e−c3(x−c1) − e−c4(x−c1)

]
, (C.1)

FunN xmin xmax c0 c1 c2 c3 c4
1 61510 61514 -0.00671929 61493 -0.00868856 -0.114874 -0.117953
2 61519 61525 -0.00160398 61585.7 -2.1e-09 0.38362 0.38362
3 61531 61545 -0.00956513 61876.8 -0.0295579 1.23958e-06 0.000704112
4 61546 61556 -0.000414459 61521.8 -0.0179471 -0.0316302 -0.030899
5 61558 61580 -0.00731749 61532.4 -0.465254 0.0200131 0.0193213
6 61581 61590 0.0604759 61561.7 -19.3314 0.0407449 0.0411026
7 61604 61608 -0.00320342 61521.1 -0.00074357 -0.018373 -0.0243743
8 61609 61622 -0.00205987 61649.1 5.94004e-05 0.0760846 -2.64412
9 61623 61637 -0.00153458 61640.7 -1.02541e-10 0.965545 0.959411
10 61638 61646 -0.000735223 61763.1 -0.00476067 0.0423013 0.0422956
11 61655 61675 -0.00123166 61561.1 -2.63733e-06 -0.159566 -0.159566
12 61678 61711 -0.00294886 61670.6 -0.0079126 0.052612 0.0252883
13 61712 61713 -0.00102705 61711.9 -0.0034062 -3.1972 -3.19763
14 61714 61724 -0.00109184 61731.2 -1.14221e-06 0.308061 -4.24803
15 61725 61729 -0.00915958 61716.6 -0.0240355 0.137179 0.0524492
16 61731 61779 -0.00295947 61669.4 0.0130552 0.00768358 0.0117274
17 61791 61796 -0.00117275 61791.9 -0.00210188 5.63266 5.63003
18 61797 61826 0.00155106 61787.7 -0.980189 0.0514066 0.0518518
19 61829 61843 -0.0015276 61826 -0.00204473 2.72258 0.275824
20 61848 61874 0.0265578 61973.2 -0.0249309 0.0010753 -0.186452
21 61876 61895 -0.00205642 61715.7 -3.3277e-05 -0.065808 -0.0658091
22 61904 61915 -0.00274984 62178.9 -0.107207 0.00976882 0.00977186
23 61925 61930 0.0064528 61924.8 -0.00849265 0.0278942 9.3268

Table C.1: α parametrization shown in figure 3.36.
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• β parametrization

β(x) = p0 + p2

[
e−p3(x−p1) − e−p4(x−p1)

]
, (C.2)

FunN xmin xmax p0 p1 p2 p3 p4
1 61510 61514 0.139127 61508.7 -0.00705827 -0.127 -0.163719
2 61519 61525 0.144057 61553.1 6.44528e-05 0.384066 0.384069
3 61531 61545 -0.238301 61487 -1.28623 0.0260483 0.011476
4 61546 61556 0.0904474 61545.1 -0.0367149 2.10481 -0.0186192
5 61558 61580 0.095243 61543.5 -0.197639 0.0280817 0.015222
6 61581 61590 0.0643454 61557.1 -0.394422 0.0358816 0.0212999
7 61604 61608 0.138436 61605.4 -0.0142253 -0.0323464 -0.0103419
8 61609 61622 0.135047 61605.8 -0.00856825 0.157423 0.0474859
9 61623 61637 0.137445 61646.8 -1.46307e-05 0.273975 -0.0770047
10 61638 61646 0.141909 61651.9 -0.103873 0.00713496 0.000949948
11 61655 61675 0.127712 61652.8 -0.00969769 0.220956 0.00215349
12 61678 61711 0.137774 61697.7 -9.15967e-05 0.237965 -0.158587
13 61712 61713 0.124706 61655.1 -3.72443e-05 -0.0443564 -0.100321
14 61714 61724 0.138057 61726.8 -0.000274029 0.234 -4.45937
15 61725 61729 0.108381 61721.3 -0.0289603 0.77633 -0.00285553
16 61731 61779 0.113727 61726 -0.0236114 0.243927 -0.00196355
17 61791 61791 0.136619 0.0 0.0 0.0 0.0
18 61792 61796 0.138708 61914.5 1.07991e-09 0.181595 0.181612
19 61797 61825 0.137559 61839.6 -0.000312349 0.160791 0.159434
20 61826 61843 0.0359758 61810.5 -0.10032 0.215911 -0.000529924
21 61848 61874 0.116396 61891.7 -0.385562 -0.0563216 -0.0479573
22 61876 61915 0.105816 61872.2 -0.0312028 0.384691 -0.00145868
23 61925 61930 0.137809 61927.5 -0.00071665 0.620419 0.222406

Table C.2: β parametrization shown in figure 3.36.
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Exclusive π0 events selection

The exclusive selection of the experimental e4Heπ0 and epπ0 events require the detection of
only one good electron, one good π0 in the topology ICIC or ICEC, and one good 4He track in
the coherent channel or one good proton in the incoherent channel case. Furthermore, in order
to ensure that this is a deep process we apply a set of initial requirements. The exclusivity of the
reaction is ensured by a set of exclusivity cuts like for the DVCS channels. These requirements
and exclusivity cuts are presented for the case of the coherent e4Heπ0 events are:

Initial criteria

These requirements are made to ensure that the selected events occurre at the partonic
level:

• High virtuality of the exchanged photon (Q2>1 GeV2).

• High energy of the emitted π0 (Eπ0 > 2 GeV).

• The invariant mass of the virtual photon and the target proton is greater than 2 GeV2/c2 in
order to avoid the baryons resonances region.

• The transfer momentum squared (−t) between the initial target and the recoil one is greater
than the minimum allowed one (tmin) defined by the kinematics of the incoming and the
scattered electrons. The definition of tmin for each channel can be found in the corresponding
DVCS channel selection presented previously.

Exclusivity requirements

The exclusivity of the selected e4Heπ0 events is done with the following cuts:

• The coplanarity cut (∆φ) between the recoil 4He and the produced π0.

• The missing energy, mass and transverse momentum cuts in the configuration e4Heπ0X.

• The missing mass cut in the configuration e4HeX.

• The missing mass cut in the configuration eπ0X.

• The cone angle cut between e4HeX and the reconstructed π0.

The same procedure holds for the case of the incoherent epπ0 events. In the following two
subsections, the results of the two channels selection are presented.
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D.1 e4Heπ0 exclusivity cuts

The events which pass the following exclusivity cuts are assumed to be good e4Heπ0 events.

Figure D.1: The blue distributions represent all the e4Heπ0 events before the exclusivity cuts. The
shaded distributions show the events which passed all the exclusivity cuts except for the quantity
plotted. The red lines are 3σ cuts. The mean and sigma values of each distribution are listed in
table E.2.

Comparison with simulation

As for the selection of the experimental e4Heπ0 events, the simulated events have to pass
an equivalent set of exclusivity cuts in addition to the π0 electroproduction criteria, presented at
the beginning of this section. In this section, we show the comparison between the experimental
and the simulated selected e4Heπ0 events as a function of the kinematic variables (Q2, xB, −t),
figure D.2, and as a function of the variables used for the exclusivity cuts, figure D.3.

Even with low experimental statistics, figures D.2 and D.3 show a good match between the
simulation and the experimental e4Heγ events for the different kinematic variables, which is
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Figure D.2: Comparison between the simulated e4Heπ0 events (red lines) and the experimental
events (blue shaded distributions) as a function of the kinematic variables: Q2, xB, −t and φh
respectively from top to right to right and from top to bottom.

satisfying for our background subtraction goal.
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Figure D.3: Comparison between the simulated and experimental e4Heγ events in terms of the
exclusivity variables. The vertical black line indicates the theoretically expected value for each
exclusive variable.
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D.2 epπ0 exclusivity cuts

The epπ0 events which pass the initial deepness criteria and the exclusivity cuts, marked by the
red vertical lines in the figure below, are considered as clean events.

Figure D.4: The blue distributions represent all the epπ0 events before any exclusive requirement.
The shaded brown distributions show the events which passed all the exclusivity cuts except the
quantity plotted. The vertical red lines represent 3σ cuts on the shaded distribution. The mean
and sigma values of each distribution are listed in table E.4.

Comparison with simulation

In this section, the experimental selected epπ0 events are compared to the Monte Carlo
simulated events. Figure D.5 shows the comparison as a function of the kinematic variables.
Figure D.6 shows the comparison in terms of the different exclusivity variables. One can see an
agreement within some degrees of differences, which might come from the fact that our protons
are bound ones and the physics of the nuclear process is not fully understood.
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Figure D.5: Comparison between the Monte Carlo simulated epπ0 events (red lines) and the
experimental ones (blue shaded distributions) as a function of the kinematic variables: Q2, xB,
−t, and φ, respectively from top to right to right and from top to bottom.
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Figure D.6: Comparison between the simulated and experimental epπ0 DVCS events as a function
of the variables used for the exclusivity cuts. The simulated distributions are normalized with
respect to the experimental ones. The vertical black lines indicate the theoretically expected
values.
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Tables list of the exclusive distributions

• Exclusive e4Heγ distributions

The quantity mean σ

∆φ 1.79405e-01 4.53791e-01
EX (e4HeγX) 1.56814e-02 2.51492e-01
M2

X (e4HeγX) -2.96869e-03 9.10158e-03
ptX (e4HeγX) 4.14664e-02 4.24914e-02
M2

X (e4HeX) -1.72013e-02 2.33988e-01
M2

X (eγX) 1.40066e+01 1.85929
θ (γ,e4HeX) 5.08070e-01 4.74883e-01
pxX (e4HeγX) -2.32102e-03 4.52945e-02
pyX (e4HeγX) -8.97351e-04 3.89937e-02

Table E.1: The mean and sigma values of the exclusive coherent quantities drawn in figure 4.3.

• Exclusive e4Heπ0 distributions

The quantity mean σ

∆φ 1.41750e-01 3.84202e-01
EX (e4Heπ0X) 7.80328e-03 1.85770e-01
M2

X (e4Heπ0X) -2.31650e-03 8.65851e-03
ptX (e4Heπ0X) 4.36619e-02 3.25254e-02
M2

X (e4HeX) -1.30346e-02 2.07791e-01
M2

X (eπ0X) 1.39835e+01 1.33781
θ (π0,e4HeX) 5.30001e-01 3.44745e-01
pxX (e4Heπ0X) -3.79596e-03 4.20732e-02
pyX (e4Heπ0X) 9.41010e-04 3.50393e-02

Table E.2: The mean and sigma values of the exclusive coherent quantities drawn in figure D.1.
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• Exclusive epγ distributions

The quantity mean σ

∆φ 4.22584e-02 1.39413
EX (epγX) 6.27739e-02 1.34499e-01
M2

X (epγX) -1.00889e-02 1.58503e-02
ptX (epγX) 8.03008e-02 4.28511e-02
M2

X (epX) 2.40257e-01 3.66321e-01
M2

X (eγX) 1.01266 2.03835e-01
θ (γ, epX) 1.06788 6.76469e-01
pxX (epγX) 3.48024e-03 8.19527e-02
pyX (epγX) -1.50911e-03 8.16219e-02

Table E.3: The mean and sigma values of the exclusive incoherent quantities drawn in figure 4.11.

• Exclusive epπ0 distributions

The quantity mean σ

∆φ -3.25864e-02 2.11499
EX (epπ0X) 9.23934e-02 1.50977e-01
M2

X (epπ0X) -1.11900e-02 2.31963e-02
ptX (epπ0X) 1.02247e-01 5.31387e-02
M2

X (epX) 2.27334e-01 2.98775e-01
M2

X (eπ0X) 1.07125 2.79845e-01
θ (π0, epX) 1.42739 8.89072e-01
pxX (epπ0X) 2.19686e-03 9.01343e-02
pyX (epπ0X) -1.30580e-03 9.05090e-02

Table E.4: The mean and sigma values of the exclusive epπ0 quantities drawn in shaded brown
in figure D.4.

ALU tables
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< Q2 > < xB > < −t > < φ > ALU ± stat. ± syst.
1.143 0.136 0.096 23.32563 0.1370716 ± 0.08373948 ± 0.02571563
1.143 0.136 0.096 59.81847 0.3758095 ± 0.07101178 ± 0.01885969
1.143 0.136 0.096 97.78493 0.4125528 ± 0.08798407 ± 0.04038886
1.143 0.136 0.096 140.0018 0.159693 ± 0.1366452 ± 0.02678967
1.143 0.136 0.096 179.0882 0.1714253 ± 0.1398893 ± 0.02789155
1.143 0.136 0.096 219.1279 -0.1240822 ± 0.1156237 ± 0.02484531
1.143 0.136 0.096 263.7259 -0.3608519 ± 0.09411095 ± 0.03891253
1.143 0.136 0.096 302.9283 -0.1683747 ± 0.07604881 ± 0.02632836
1.143 0.136 0.096 337.3336 -0.3508557 ± 0.07680001 ± 0.03431105
1.423 0.172 0.099 19.94307 0.1650792 ± 0.067211 ± 0.02673700
1.423 0.172 0.099 57.17185 0.3028724 ± 0.068908 ± 0.02503328
1.423 0.172 0.099 95.77216 0.4372785 ± 0.099537 ± 0.04267748
1.423 0.172 0.099 137.9543 0.1147926 ± 0.142932 ± 0.02500644
1.423 0.172 0.099 180.9498 0.1924395 ± 0.1806951 ± 0.03026008
1.423 0.172 0.099 220.1671 -0.2589808 ± 0.1611112 ± 0.03447198
1.423 0.172 0.099 263.1496 -0.3065283 ± 0.1158366 ± 0.03663218
1.423 0.172 0.099 302.3187 -0.3646641 ± 0.069707 ± 0.03835156
1.423 0.172 0.099 338.0674 -0.1660148 ± 0.069482 ± 0.02613428
1.902 0.224 0.107 20.96588 0.0841330 ± 0.06370723 ± 0.02345626
1.902 0.224 0.107 56.59966 0.3739804 ± 0.06574343 ± 0.01851792
1.902 0.224 0.107 95.79632 0.1779531 ± 0.1058264 ± 0.0173685
1.902 0.224 0.107 139.5123 0.1574064 ± 0.1713567 ± 0.01702304
1.902 0.224 0.107 179.5613 -0.0837227 ± 0.2119008 ± 0.01265815
1.902 0.224 0.107 221.6768 -0.1251566 ± 0.1783256 ± 0.01528429
1.902 0.224 0.107 263.0872 -0.3069055 ± 0.1173135 ± 0.02602474
1.902 0.224 0.107 303.6431 -0.2404473 ± 0.07568278 ± 0.02071202
1.902 0.224 0.107 339.2973 -0.184311 ± 0.06150122 ± 0.01635832

Table E.5: The coherent ALU in Q2 bins
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< Q2 > < xB > < −t > < φ > ALU ± stat. ± syst.
1.164 0.132 0.095 24.70837 -0.0009864 ± 0.1023417 ± 0.02214862
1.164 0.132 0.095 60.38457 0.394491 ± 0.06742577 ± 0.01984295
1.164 0.132 0.095 98.05482 0.4169974 ± 0.0822727 ± 0.04084068
1.164 0.132 0.095 140.4849 0.2629772 ± 0.1287244 ± 0.03336946
1.164 0.132 0.095 178.7877 0.1917519 ± 0.133959 ± 0.02937379
1.164 0.132 0.095 218.4067 -0.1139352 ± 0.1099316 ± 0.02438166
1.164 0.132 0.095 263.7104 -0.3303477 ± 0.08687361 ± 0.0372357
1.164 0.132 0.095 302.0021 -0.158615 ± 0.06873616 ± 0.02598807
1.164 0.132 0.095 335.3734 -0.2978278 ± 0.09144179 ± 0.03198552
1.439 0.17 0.099 21.20114 0.1944966 ± 0.06481715 ± 0.023002136
1.439 0.17 0.099 57.05011 0.2135007 ± 0.0688628 ± 0.01959182
1.439 0.17 0.099 95.32827 0.3033697 ± 0.1028014 ± 0.0295878
1.439 0.17 0.099 137.6747 0.1027237 ± 0.134283 ± 0.01876947
1.439 0.17 0.099 180.8816 -0.0055032 ± 0.1730991 ± 0.0197908
1.439 0.17 0.099 220.8371 -0.2294214 ± 0.1615644 ± 0.0270881
1.439 0.17 0.099 264.4366 -0.2758285 ± 0.1156173 ± 0.02923329
1.439 0.17 0.099 302.6414 -0.3697083 ± 0.07362371 ± 0.03312501
1.439 0.17 0.099 337.925 -0.2626907 ± 0.06672689 ± 0.02543044
1.844 0.225 0.107 19.94412 0.1199148 ± 0.0610976 ± 0.024893846
1.844 0.225 0.107 56.1033 0.4535308 ± 0.07056983 ± 0.02240954
1.844 0.225 0.107 95.56723 0.2782661 ± 0.1178502 ± 0.02714954
1.844 0.225 0.107 139.3193 -0.0854730 ± 0.2144445 ± 0.01668931
1.844 0.225 0.107 180.6025 0.1409771 ± 0.2599303 ± 0.02044162
1.844 0.225 0.107 223.7917 -0.2456453 ± 0.2105987 ± 0.02706752
1.844 0.225 0.107 260.904 -0.3907139 ± 0.1417117 ± 0.03533464
1.844 0.225 0.107 304.3742 -0.2674945 ± 0.08101173 ± 0.02630272
1.844 0.225 0.107 340.0658 -0.125335 ± 0.06016415 ± 0.01755089

Table E.6: The coherent ALU in xB bins
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< Q2 > < xB > < −t > < φ > ALU ± stat. ± syst.
1.36 0.160 0.080 21.30242 0.1531553 ± 0.07225752 ± 0.026305318
1.36 0.160 0.080 57.11194 0.2900274 ± 0.06585235 ± 0.02439207
1.36 0.160 0.080 96.15277 0.4041914 ± 0.09641501 ± 0.03947151
1.36 0.160 0.080 137.9588 0.1402594 ± 0.1434757 ± 0.02522018
1.36 0.160 0.080 179.2052 0.3218006 ± 0.1641379 ± 0.03717874
1.36 0.160 0.080 221.4243 -0.3213178 ± 0.1356342 ± 0.03708316
1.36 0.160 0.080 265.92 -0.392002 ± 0.1066914 ± 0.04038161
1.36 0.160 0.080 301.3226 -0.2284983 ± 0.07726413 ± 0.02940459
1.36 0.160 0.080 339.661 -0.2348847 ± 0.06494273 ± 0.02810254
1.507 0.179 0.094 21.17746 0.1631617 ± 0.07120653 ± 0.026711914
1.507 0.179 0.094 56.92214 0.3715996 ± 0.06870001 ± 0.02842517
1.507 0.179 0.094 97.24788 0.3145243 ± 0.09659388 ± 0.03076673
1.507 0.179 0.094 141.6889 0.1388844 ± 0.1607593 ± 0.02150343
1.507 0.179 0.094 179.6762 -0.3612444 ± 0.1723714 ± 0.03603272
1.507 0.179 0.094 220.3783 -0.029479 ± 0.1576259 ± 0.01477838
1.507 0.179 0.094 262.64 -0.2524102 ± 0.1096333 ± 0.02830972
1.507 0.179 0.094 303.6787 -0.282367 ± 0.07599572 ± 0.02864878
1.507 0.179 0.094 338.2113 -0.1464348 ± 0.07113145 ± 0.02012911
1.610 0.193 0.127 21.08428 0.0341355 ± 0.07013161 ± 0.021403381
1.610 0.193 0.127 59.38832 0.4083206 ± 0.07247885 ± 0.02045513
1.610 0.193 0.127 96.08225 0.3209038 ± 0.1013991 ± 0.0313346
1.610 0.193 0.127 138.5581 0.1170443 ± 0.146122 ± 0.02038013
1.610 0.193 0.127 180.2608 0.3477719 ± 0.1581127 ± 0.0354366
1.610 0.193 0.127 218.4883 -0.091217 ± 0.142311 ± 0.01898904
1.610 0.193 0.127 261.3985 -0.320382 ± 0.1108918 ± 0.0327608
1.610 0.193 0.127 303.3648 -0.266328 ± 0.07080153 ± 0.02802882
1.610 0.193 0.127 337.2208 -0.261976 ± 0.07224138 ± 0.02615273

Table E.7: The coherent ALU in -t bins
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< Q2 > < xB > < −t > < φ > ALU ± stat. ± syst.
1.395 0.166 0.407 21.10406 0.04811468 ± 0.04658231 ± 0.012062557
1.395 0.166 0.407 61.33965 0.0836005 ± 0.0531715 ± 0.015623204
1.395 0.166 0.407 95.84617 0.1792438 ± 0.05315892 ± 0.02637904
1.395 0.166 0.407 140.0124 0.04524659 ± 0.07010027 ± 0.0158652
1.395 0.166 0.407 181.9726 0.1242038 ± 0.08510458 ± 0.02346724
1.395 0.166 0.407 219.0216 0.03828423 ± 0.07649991 ± 0.01509915
1.395 0.166 0.407 259.0493 -0.1422473 ± 0.0495869 ± 0.02266091
1.395 0.166 0.407 303.8597 -0.1478417 ± 0.03942399 ± 0.01968592
1.395 0.166 0.407 337.5399 -0.0844819 ± 0.04879445 ± 0.01425768
1.886 0.233 0.499 20.62881 -0.0058365 ± 0.03877985 ± 0.012482536
1.886 0.233 0.499 58.90961 0.1058029 ± 0.05262749 ± 0.016983385
1.886 0.233 0.499 95.93819 0.1373368 ± 0.06176916 ± 0.02021609
1.886 0.233 0.499 141.0758 0.2106814 ± 0.09877572 ± 0.02858216
1.886 0.233 0.499 179.8328 0.06009099 ± 0.1188988 ± 0.01464961
1.886 0.233 0.499 220.9095 -0.03806458 ± 0.1066278 ± 0.04304848
1.886 0.233 0.499 260.608 -0.1192977 ± 0.07428519 ± 0.01808374
1.886 0.233 0.499 304.2599 -0.2011292 ± 0.05552498 ± 0.0198082
1.886 0.233 0.499 338.4649 -0.0815212 ± 0.0567802 ± 0.01138369
2.338 0.29 0.521 20.72956 0.08229175 ± 0.03744839 ± 0.013506039
2.338 0.29 0.521 56.90895 0.155593 ± 0.05379751 ± 0.01010521
2.338 0.29 0.521 94.91647 0.05217237 ± 0.0715696 ± 0.017660975
2.338 0.29 0.521 141.1955 0.1371172 ± 0.1260972 ± 0.01618568
2.338 0.29 0.521 181.6533 -0.2127209 ± 0.1556657 ± 0.02363223
2.338 0.29 0.521 224.0629 0.2006703 ± 0.1501709 ± 0.02122811
2.338 0.29 0.521 261.0354 -0.2716077 ± 0.09343596 ± 0.02419026
2.338 0.29 0.521 303.8146 -0.2199163 ± 0.06880397 ± 0.01534961
2.338 0.29 0.521 339.3798 -0.0379564 ± 0.06803362 ± 0.014507918
3.098 0.379 0.65 20.11158 0.1124871 ± 0.03615842 ± 0.014743619
3.098 0.379 0.65 56.98647 0.0725830 ± 0.0555646 ± 0.014717011
3.098 0.379 0.65 95.74599 0.1911079 ± 0.07990027 ± 0.02811833
3.098 0.379 0.65 137.8186 -0.005798 ± 0.1509773 ± 0.01296021
3.098 0.379 0.65 179.3002 -0.605363 ± 0.2490573 ± 0.027008585
3.098 0.379 0.65 227.8571 0.1695245 ± 0.1915087 ± 0.02732611
3.098 0.379 0.65 263.4649 -0.120036 ± 0.09407594 ± 0.02149023
3.098 0.379 0.65 303.8994 -0.178453 ± 0.04217566 ± 0.02211641
3.098 0.379 0.65 340.4588 -0.059749 ± 0.03455414 ± 0.01412915

Table E.8: The incoherent ALU in Q2 bins
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< Q2 > < xB > < −t > < φ > ALU ± stat. ± syst.
1.425 0.162 0.397 21.03589 0.08658236 ± 0.04970597 ± 0.013707438
1.425 0.162 0.397 62.13969 0.09617981 ± 0.0520029 ± 0.016508612
1.425 0.162 0.397 95.88097 0.1468384 ± 0.05007717 ± 0.02161179
1.425 0.162 0.397 140.2158 0.05840751 ± 0.06522249 ± 0.0149864
1.425 0.162 0.397 181.147 0.1472116 ± 0.07694323 ± 0.02355567
1.425 0.162 0.397 218.8907 -0.0045843 ± 0.07180578 ± 0.01995755
1.425 0.162 0.397 259.1392 -0.1140192 ± 0.04807579 ± 0.01836548
1.425 0.162 0.397 303.893 -0.1078614 ± 0.04183492 ± 0.01540446
1.425 0.162 0.397 337.0219 -0.0313563 ± 0.05506042 ± 0.01052464
1.922 0.227 0.418 22.06063 -0.0071624 ± 0.04158333 ± 0.013118195
1.922 0.227 0.418 58.5659 0.09277118 ± 0.05070619 ± 0.016106517
1.922 0.227 0.418 96.23033 0.1248119 ± 0.05973952 ± 0.01838518
1.922 0.227 0.418 141.4482 0.1767175 ± 0.09500723 ± 0.0246086
1.922 0.227 0.418 181.8282 -0.0887164 ± 0.1180524 ± 0.01655364
1.922 0.227 0.418 221.2517 -0.2925814 ± 0.102211 ± 0.03431685
1.922 0.227 0.418 260.3485 -0.1909171 ± 0.06539497 ± 0.02278749
1.922 0.227 0.418 303.5284 -0.2302893 ± 0.05094602 ± 0.02067598
1.922 0.227 0.418 337.3474 -0.0637682 ± 0.05413252 ± 0.01008997
2.354 0.287 0.492 20.85891 0.04657884 ± 0.036766 ± 0.01988718
2.354 0.287 0.492 57.91331 0.1459641 ± 0.0526584 ± 0.019557668
2.354 0.287 0.492 94.69206 0.128379 ± 0.07104001 ± 0.01884086
2.354 0.287 0.492 139.8528 0.1707919 ± 0.1258279 ± 0.02424851
2.354 0.287 0.492 179.8321 -0.3851509 ± 0.1628791 ± 0.014502416
2.354 0.287 0.492 225.9931 0.359824 ± 0.1375561 ± 0.014015373
2.354 0.287 0.492 261.519 -0.2473872 ± 0.08518201 ± 0.02723866
2.354 0.287 0.492 304.2744 -0.1756475 ± 0.04527543 ± 0.01784578
2.354 0.287 0.492 338.8707 -0.0591266 ± 0.04527858 ± 0.01010778
2.987 0.390 0.714 19.433 0.1032664 ± 0.03435814 ± 0.014305278
2.987 0.390 0.714 55.24427 0.07535726 ± 0.06348906 ± 0.014826822
2.987 0.390 0.714 95.27441 0.21340720 ± 0.1066241 ± 0.03136377
2.987 0.390 0.714 134.3823 -0.2684007 ± 0.2723481 ± 0.03863117
2.987 0.390 0.714 182.475 3.6842530 ± 5.592241 ± 0.03642855
2.987 0.390 0.714 232.2045 -0.3810377 ± 0.426418 ± 0.04691644
2.987 0.390 0.714 264.8367 -0.0853021 ± 0.1126019 ± 0.02026491
2.987 0.390 0.714 304.1341 -0.1678875 ± 0.04062397 ± 0.02296748
2.987 0.390 0.714 341.2705 -0.0649467 ± 0.03014188 ± 0.01568537

Table E.9: The incoherent ALU in xB bins
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< Q2 > < xB > < −t > < φ > ALU ± stat. ± syst.
1.823 0.213 0.145 22.36456 0.08044984 ± 0.044171 ± 0.013519389
1.823 0.213 0.145 57.76681 0.139094 ± 0.05252524 ± 0.019097037
1.823 0.213 0.145 97.34826 0.1215345 ± 0.05070444 ± 0.01794958
1.823 0.213 0.145 141.6077 0.1973951 ± 0.07158507 ± 0.0263301
1.823 0.213 0.145 180.9132 0.03301465 ± 0.087735 ± 0.01504234
1.823 0.213 0.145 219.6382 0.00344467 ± 0.07526837 ± 0.018209534
1.823 0.213 0.145 261.1274 -0.1527359 ± 0.05030086 ± 0.01958999
1.823 0.213 0.145 303.674 -0.1071745 ± 0.04406731 ± 0.0137369
1.823 0.213 0.145 337.0581 -0.06869941 ± 0.04715184 ± 0.01004524
2.127 0.255 0.282 21.36259 0.07262895 ± 0.04230211 ± 0.013126559
2.127 0.255 0.282 59.22203 0.03806518 ± 0.04905662 ± 0.012518665
2.127 0.255 0.282 95.55563 0.22988040 ± 0.05867932 ± 0.03380763
2.127 0.255 0.282 140.5704 -0.03154477 ± 0.08162287 ± 0.0178829
2.127 0.255 0.282 181.2953 -0.1565047 ± 0.10092 ± 0.0298368
2.127 0.255 0.282 219.844 -0.03787627 ± 0.09359193 ± 0.01834677
2.127 0.255 0.282 259.6599 -0.1349929 ± 0.05604338 ± 0.02535689
2.127 0.255 0.282 304.1345 -0.1822338 ± 0.03916768 ± 0.02481545
2.127 0.255 0.282 338.5113 -0.07208852 ± 0.04495988 ± 0.01711214
2.308 0.284 0.490 20.67062 0.129165 ± 0.0415758 ± 0.015497728
2.308 0.284 0.490 59.71279 0.113594 ± 0.05196332 ± 0.017545246
2.308 0.284 0.490 94.41645 0.1003674 ± 0.06511375 ± 0.01472001
2.308 0.284 0.490 137.7611 0.1088956 ± 0.1159367 ± 0.01662967
2.308 0.284 0.490 181.8561 0.3436873 ± 0.1353462 ± 0.03922332
2.308 0.284 0.490 225.1743 -0.06749131 ± 0.1106012 ± 0.01250426
2.308 0.284 0.490 259.4171 -0.2186645 ± 0.06202168 ± 0.02341567
2.308 0.284 0.490 302.9163 -0.1778958 ± 0.03422616 ± 0.01629588
2.308 0.284 0.490 338.8539 -0.04591294 ± 0.03922611 ± 0.017893601
2.406 0.308 0.90 20.16669 0.01851554 ± 0.03466921 ± 0.017815254
2.406 0.308 0.90 57.08842 0.167122 ± 0.06853916 ± 0.01086996
2.406 0.308 0.90 93.11341 0.07585309 ± 0.140148 ± 0.01108901
2.406 0.308 0.90 132.8371 -0.1390574 ± 0.4839775 ± 0.01772069
2.406 0.308 0.90 177.344 1.854154 ± 0.5453675 ± 0.01816686
2.406 0.308 0.90 228.2105 5.778605 ± 10.58589 ± 0.01512427
2.406 0.308 0.90 263.1194 0.02895751 ± 0.1390042 ± 0.017122356
2.406 0.308 0.90 305.0914 -0.1501369 ± 0.04840413 ± 0.01297528
2.406 0.308 0.90 340.095 -0.05253375 ± 0.03990596 ± 0.016446498

Table E.10: The incoherent ALU in -t bins
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