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Abstract

We discuss the electroproduction of scalar (0++) or pseudoscalar (0−+) meson production off
the scalar target. The most general formulation of the differential cross section for the 0−+ or
0++ meson production process involves only one or two hadronic form factors, respectively, on
a scalar target. The Rosenbluth type separation of the differential cross section provides the
explicit relation between the hadronic form factors and the different parts of the differential
cross section in a completely model-independent manner. The absence of the single spin asym-
metry for the pseudoscalar meson production provides the benchmark for the experimental
data analysis. The measurement of the single spin asymmetry for the scalar meson production
may provide a clear criterion whether the leading-twist formulation of the generalized parton
distribution is in agreement with the most general formulation of the hadronic tensor.
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While the virtual Compton scattering process is coherent with the Bethe-Heitler process,
the meson electroproduction process offers a unique experimental determination of the hadronic
structures for the study of QCD and strong interactions. In particular, coherent electroproduc-
tion of the scalar (0++) or pseudoscalar (0−+) meson production off a scalar target (e.g. the
4He nucleus) provides an excellent experimental terrain to discuss the fundamental nature of
the hadron physics without involving many complications from the spin degrees of freedom.
We discuss in this work two benchmark examples (0++ vs. 0−+) that provide a unique interface
between the theoretical framework and the experimental measurements of physical observables.

To establish the notation for the electroproduction of meson m off the scalar target h, we
write

e(k) + h(P ) → e′(k′) + h′(P ′) +m(q′), (1)

and the virtual photon momentum is defined to be q = k − k′, see Fig. 1. In the target rest
frame (TRF) presented in Ref. [1], the differential electroproduction cross section is given by

dσ ≡ d5σ

dydxdtdφk′dφq′
= κ〈|M|2〉, (2)
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Figure 1: Momentum assignments in meson electroproduction process with one-photon-exchange.

where

κ ≡ 1

(2π)5
yx

32Q2
√

1 + (2Mx
Q

)2
. (3)

Here, y = P · q/P · k, t = (P − P ′)2 and x = Q2/(2P · q) = Q2/(2Mν) with Q2 = −q2, the
target mass M and the virtual photon energy ν in TRF. For the one-photon-exchange process,
the transition amplitude M can be expressed as the invariant product of the leptonic current
eLµ = eūe′(k

′, s′)γµue(k, s) and the hadronic current eJµ mediated by the photon propagator,
i.e. M = e2L · J/q2. As discussed in Ref. [1], by using the reduced three momenta product
obtained from the q · J = 0 relation, we get the following invariant amplitude squared

〈|M|2〉 =

(

e2

q2

)2

LµνHµν

=

(

e2

q2

)2 [
2q2

ǫ− 1
〈|τfi|〉2 + 2iλǫµναβkαk

′
βJ

†
µJν

]

, (4)

where the hadronic tensor is given by

Hµν = J†
µJν (5)

and the leptonic tensor including the electron beam polarization λ is given by

Lµν = q2Λµν + 2iλǫµναβkαk
′
β (6)

with Λµν = gµν + 2
q2
(kµk′ν + k′µkν). Here, Lµν and Hµν are contracted to yield Eq. (4) with

〈|τfi|〉2 =
1

2
(|Hx|2 + |Hy|2) +

ǫ

2
(|Hx|2 − |Hy|2) + ǫL|Hz|2 −

√

1

2
ǫL(1 + ǫ)(H∗

xHz +H∗
zHx), (7)
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where Hi = Ji(i = x, y, z), ǫ = Λxx−Λyy

Λxx+Λyy = − 2M2x2y2+2Q2(y−1)
2M2x2y2+Q2(y2−2y+2)

and ǫL = Q2

ν2
ǫ as given by

Eq. (16) of Ref. [1]. The last terms in Eqs. (4) and (6) for the case of a polarized electron
beam with λ = ±1 depending on the electron spin are related with the single spin asymmetry
(SSA). Due to the absence of the interference with the Bethe-Heitler process, the SSA of the
meson electroproduction is a direct measure of any asymmetry within the hadronic tensor, i.e.,
Hµν 6= Hνµ.

In parallel to the Levi-Civita symbol ǫµναβ , we have recently introduced in Ref. [2] the back
bone of the Compton tensor defined by

dµναβ = gµνgαβ − gµαgνβ, (8)

which may be used to construct pieces of “DNA” for the virtual Compton scattering as well
as the meson electroproduction by contracting with the three basis four vectors such as q, P̄ =
P +P ′ and ∆ = P −P ′ = q′ − q. The most general hadronic tensor structures obtained by our
“DNA” method in virtual Compton scattering off the scalar target are in complete agreement
with the previous results by Metz [3] and further comparisons with other methods [4] and
results of general hadronic tensors for the nucleon target [5] are underway. In the present work
of the meson electroproduction off the scalar target, we note that the hadronic current for the
pseudoscalar (0−+) meson production is governed by a single hadronic form factor defined by

Jµ
PS = FPSǫ

µναβqνP̄α∆β , (9)

while the hadronic current for the scalar (0++) meson production involves two hadronic form
factors given by

Jµ
S = (Sqqα + SP̄ P̄α)d

µναβqβ∆ν , (10)

where the hadronic form factors FPS, Sq and SP̄ are dependent on the Lorentz invariant vari-
ables Q2, x and t = ∆2. Redefining the scalar hadronic form factors F1 and F2 for the later
convenience as

F1 = Sq − SP̄ ,

F2 = SP̄ , (11)

we get the hadronic current for the scalar (0++) meson production as

Jµ
S = F1(q

2∆µ − qµq ·∆) + F2[(P̄ · q + q2)∆µ − (P̄ µ + qµ)q ·∆], (12)

which reduces to the usual electromagnetic current Jµ ∝ (P + P ′)µ for the case of no meson
production, i.e. q′ = 0. The electromagnetic current conservation is assured of course both for
the electroproduction of pseudoscalar (0−+) and scalar (0++) mesons owing to qµJ

µ
PS = 0 and

qµJ
µ
S = 0, respectively.
For the pseudoscalar meson production case, we should note that the SSA term is zero

because, owing to the fact that only a single hadronic form factor occurs, the hadronic tensor

3



is symmetric:

Hµν = |FPS|2ǫµαβγǫνα′β′γ′qαP̄ β∆γqα
′

P̄ β′

∆γ′

= Hνµ, (13)

and contracts with the antisymmetric leptonic tensor 2iλǫµναβkαk
′
β for the SSA given by Eq. (4),

i.e.
ǫµναβkαk

′
βHµν = 0. (14)

The situation here is very different from the π0 electroproduction off a proton target in which
several hadronic form factors are involved. The status of the data and phenomenology in the
generalized parton distribution (GPD) approach of deeply virtual meson production (DVMP)
on the nucleon has been reviewed in Ref. [6]. The GPD formulation has been applied to the
deeply virtual Compton scattering (DVCS) process off the pion [7], on spinless nuclear targets
in the impulse approximation [8] as well as off nuclei up to spin-1 [9], and further refined off a
spinless target [10]. The coherent vs. incoherent DVCS processes off the spin 0 nuclei have also
been discussed with respect to the nuclear medium modification of hadrons in terms of the GPD
formulation [11]. In clear distinction from the recent SSA measurement of DVCS off 4He [12],
however, the meson electroproduction process discussed here doesn’t have any interference with
the Bethe-Heitler process. As far as a single hadronic form factor governs the hadronic current,
the SSA of the meson electroproduction should vanish in general regardless of the complexity
in the hadronic form factor. We thus note that the SSA of the coherent pseudoscalar (e.g.
π0) meson electroproduction off the scalar target (e.g. the 4He nucleus) vanishes due to the
symmetry given by Eq. (14): i.e.,

dσPS
λ=+1 − dσPS

λ=−1

dσPS
λ=+1 + dσPS

λ=−1

= 0. (15)

Moreover, in the TRF kinematics [1] defining the azimuthal angle φ between the leptonic
plane and the hadronic plane taking the virtual photon direction as ẑ-direction, the hadronic
current for the pseudoscalar (0−+) meson production given by Eq. (9) yields Hz = 0 in Eq. (7).
Regardless of the electron beam polarization λ, the differential cross section for the pseudoscalar
meson (e.g. π0) production is thus given by

dσPS = dσPS
U + dσPS

P ǫ cos 2φ = dσPS
U (1− ǫ cos 2φ), (16)

where

dσPS
U = −dσPS

P

= κ
e4|FPS(Q

2, t, x)|2 sin2 θ

4M2x4(1− ǫ)

(

4M2x2 +Q2
) [

x2
(

t2 − 4m2M2
)

+Q4 + 2Q2tx
]

, (17)

with the meson mass m and the lab angle θ for the meson production in the hadronic plane.
This provides the Rosenbluth type separation of the differential cross section for the electropro-
duction of the pseudoscalar meson, from which the pseudoscalar meson form factor FPS(Q

2, t, x)
may be extracted directly from the experimental data of the differential cross section if available.
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For the scalar meson production case, however, the SSA term doesn’t vanish as there are
two independent hadronic form factors F1(Q

2, t, x) and F2(Q
2, t, x) given by Eq. (12), which

are complex in general. The differential cross section for the scalar meson production is given
by

dσS
λ = dσS

U + dσS
P ǫ cos(2φ) + dσS

LǫL + dσS
I cos φ

√

ǫL(1 + ǫ) + λ dσS
SSA, (18)

where dσS
U = dσS

P and









dσS
U

dσS
L

dσS
I

dσS
SSA









=









U1 U2 U3 0
L1 L2 L3 0
I1 I2 I3 0
0 0 0 SA

















|F1|2
|F2|2
F+
12

F−
12









(19)

with F±
12 = F1F

∗
2 ± F2F

∗
1 . The matrix elements in Eq. (19) are obtained as follows:

U1 =
κe4 sin2 θQ2

4M2x2(1− ǫ)

(

x2
(

t2 − 4m2M2
)

+Q4 + 2Q2tx
)

,

U2 =
κe4 sin2 θQ2(x− 1)2

4M2x4(1− ǫ)

(

x2
(

t2 − 4m2M2
)

+Q4 + 2Q2tx
)

,

U3 =
√

U1U2,

L1 =
κe4Q4

8M2x2(1− ǫ) (4M2x2 +Q2)

(

m2 +Q2 + t(2x− 1)
)2

,

L2 =
κe4 (m2 (4M2x+Q2) +Q2 (4M2x+ 2tx− 3t)− 4M2tx+Q4)

2

8M2x2(1− ǫ) (4M2x2 +Q2)
,

L3 =
√

L1L2,

I1 =
κe4Ic tan θQ

2 (m2 +Q2 + t(2x− 1))

2M2x2(ǫ− 1) (4M2x2 +Q2)
,

I2 =
κe4Ic tan θ(x− 1)

2M2x3(ǫ− 1) (4M2x2 +Q2)

×
[

m2
(

4M2x+Q2
)

+Q2
(

4M2x+ 2tx− 3t
)

− 4M2tx+Q4

]

,

I3 =
κe4Ic tan θ

4M2x3(ǫ− 1) (4M2x2 +Q2)

[

m2
(

4M2x2 +Q2(2x− 1)
)

+Q2(4M2x2 + 4tx2 − 6tx+ t)− 4M2tx2 +Q4(2x− 1)

]

,

SA = κe4
sin θ sinφ

2Mx2y

(

m2 +Q2 − t
)

×
√

Q2(y − 1) +M2x2y2
√

x2 (t2 − 4m2M2) +Q4 + 2Q2tx, (20)
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where Ic = 2M2x2 (t−m2)+Q2x (2M2x+ t)+Q4 and cos θ = Ic

Q
√

(4M2x2+Q2)(x2(t2−4m2M2)+Q4+2Q2tx)
.

Thus, the SSA of the coherent scalar meson electroproduction off the scalar target is given by

dσS
λ=+1 − dσS

λ=−1

dσS
λ=+1 + dσS

λ=−1

=
dσS

SSA

dσS
U(1 + ǫ cos(2φ)) + dσS

LǫL + dσS
I cosφ

√

ǫL(1 + ǫ)
, (21)

which is proportional to F1F
∗
2 − F2F

∗
1 . As F1F

∗
2 − F2F

∗
1 6= 0 in general, the SSA of the scalar

meson (e.g. f0(980)) electroproduction is not expected to vanish. For the kinematic region
where at least one of F1 and F2 develops the imaginary part, the SSA shouldn’t vanish. The
nonvanishing SSA measured in DVCS off 4He [12] indicates that the imaginary part of the
hadronic amplitude is accessible in the current experimental regime. Therefore, it will be very
interesting to compare the experimental data on the SSAs between the π0 electroproduction
and the f0(980) electroproduction off the 4He nucleus. We note that Eqs. (18) - (20) provide
the Rosenbluth type separation of the differential cross section for the electroproduction of the
scalar meson, from which the scalar meson form factors F1(Q

2, t, x) and F2(Q
2, t, x) can be

directly extracted from the experimental data. In principle, the experimental data can reveal
both the real part and the imaginary part of F1(Q

2, t, x) and F2(Q
2, t, x) through Eqs. (18)

- (20) and the consistency with the SSA given by Eq. (21) can be checked for the kinematic
region where any of these form factors is found to develop the imaginary part.

In contrast to our general formulation with the two independent hadronic form factors for
the electroproduction of the scalar (0++) meson, the leading twist GPD formulation yields a
single GPD and thus provides the zero SSA, dσS

SSA = 0. The situation here is very different from
the DVMP on the nucleon which involves more than one leading twist GPDs [6]. As discussed
in our review [13], the original leading twist GPD formulations [14, 15, 16] are limited to the
kinematic region |t| << Q2. The leading twist formulation in Ref. [15] adopts a specific relation
among the particle momenta given by q = q′ − ζP or P ′ = (1 − ζ)P , where ζ is the skewness
in the GPD formulation [14] given by ζ = ∆+/P+. If we apply this leading twist relation
q = q′−ζP to our general formulation given by Eq. (12), the scalar meson current gets reduced
to

Jµ
S = ζ(F1 + F2)(q

2P µ − qµq · P ), (22)

where the two independent form factors merge together to yield effectively only one hadronic
form factor that corresponds to a single leading twist GPD. Thus, the reduced formulation
with a single hadronic form factor corresponding to a single leading twist GPD results in the
symmetric hadronic tensor Hµν = Hνµ as in the case of the pseudoscalar meson electropro-
duction and yields the vanishing SSA as it contracts with the antisymmetric leptonic tensor
2iλǫµναβkαk

′
β. The coherent experimental measurement to judge whether the SSA of the scalar

meson (e.g. f0(980)) electroproduction off the scalar target (e.g. the 4He nucleus) vanishes or
not would provide a unique opportunity to distinguish between the leading twist GPD formula-
tion and our general formulation presented in this work. In this respect, not only pseudoscalar
but also scalar meson electroproduction measurements off a scalar target are highly desired to
pin down the viable roadmap on the analyses of precision experimental data, e.g. from the
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JLab 12 GeV upgrade. An exactly solvable hadronic model calculation is currently underway
to explore the kinematic regions where all the hadronic form factors discussed here develop
imaginary parts, and explicitly demonstrate the extraction of the hadronic form factors from
our general formulation of the hadronic currents.
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