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1 Inroduction

Considering the very small mass of neutral pion with respect to the energies at EIC, these kinematics
studies are the same for DVCS. In the following studies, I have applied the following cuts for the electron
plots :

— Q2%<100 GeV2.

— 0.<140°.

— W2>4 GeV2.

— y>0.01 and y<0.95.
with in addition the following cut on the 7%-momentum for the 7° and the recoil proton plots :

— 2 GeV<p“O<80 GeV.

Since one of the main observable is the t-dependence of the cross sections, I have looked at the
m9-momentum for t=t,n, -0.5 GeV? and -1 GeV2. In the case where t,;, is lower than the requested t-
value, then t,,;,, is used y default. If t,,4, is greater than the requested t-value, then t,,,. is used y default.

Following the recommendations of the accelerator group, I have studied the configurations :
— Electron beam at 5 GeV and Proton beam at 41 GeV.

— Electron beam at 5 GeV and Proton beam at 100 GeV.

— Electron beam at 10 GeV and Proton beam at 100 GeV.

— Electron beam at 18 GeV and Proton beam at 275 GeV.

2 Electron kinematics

Here are the electron momentum /rapidity distributions as a function of Q? and xp. I have required
to have y>0.01 and y<0.95. I have assumed that the maximal scattering angle we can detect for the
electron is 140 degrees. These plots have been produced without applying any cut on the 7%
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FIGURE 1 — Rapidity (Left) and momentum (right) of scattered electron as function of Q% and xp.

3 7Y kinematics

The tmin-7¥ is generated by having it collinear to the virtual photon exchanged between the proton
and the electron. As Q2 increases, the 7¥ is more backward and its momentum slightly increases. The
7%-momentum has a minimum as function of xg for Q? less than 600 GeV? for the highest /s, and then

becomes a monotonic increasing function of xp for higher Q2 values.
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FIGURE 2 — n0-rapidity at t=t,,i, as function of @2 and xp for the four beam configurations.

Taking into account the possible limitation of the calorimeter on the lowest photon energy at 1 GeV,
I have applied a cut at 2 GeV on the 7° momentum for three t-values which are t,in, -0.5 and -1 GeV?2.

For all \/s-configuration, a significant phase space is lost at lower Q? and high xp for t ranging from
timin to -1 GeV2.

4 Recoil proton kinematics

For the moment, no constrain are applied on the proton side. Here are the proton kinematics in the
same configurations as it was presented for the 7% in the previous section.

5 Discussion

In order to determine the most suitable configurations for a GPD extraction with DVCS data, we
must go further with pseudo-phenomenological analysis. To cover xg>0.1, it seems that the configuration
5x100 is more suitable than 5x41 because of 2 GeV cut on the 7%-momentum. Although, because of
the cut on y>0.1, we are losing low Q? phase space for xz above 0.2. Would we get enough satistics
at 5x100 compared to 5x41 for xp above 0.2 despite the higher Q%-values? Or is there any technical
reasons behind the cut y>0.01? Otherwise we could even recover these low Q2-points.

Finally the region xp from 1073 to 1072 for Q? smaller than 3 GeV? will not be accessible for DVCS
studies because the 7% cannot be studied. I remind that the 70 cross sections increases with xp and
decreases with Q2.
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FIGURE 3 — 7%-momentum as function of Q? and xp for t=t,, -0.5 and -1 GeV?.
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FIGURE 4 — Proton rapidity at t=t,,;, as function of @ and xp for the four beam configurations.
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FIGURE 5 — Proton momentum as function of Q2 and xg for t=t,nin, -0.5 and -1 GeV?2.



