Exclusive π^0 studies for calorimeter resolutions

Maxime Defurne - CEA Saclay

April 11, 2020

Contents

1	Inroduction	1
2	Electron kinematics	1
3	π^0 kinematics	2
4	Recoil proton kinematics	3
5	Discussion	3

1 Inroduction

Considering the very small mass of neutral pion with respect to the energies at EIC, these kinematics studies are the same for DVCS. In the following studies, I have applied the following cuts for the electron plots :

 $- Q^2 < 100 \text{ GeV}^2.$

 $- \theta_e < 140^\circ.$

 $- W^2 > 4 \text{ GeV}^2.$

- y > 0.01 and y < 0.95.

with in addition the following cut on the π^0 -momentum for the π^0 and the recoil proton plots :

 $- 2 \text{ GeV} < p^{\pi^0} < 80 \text{ GeV}.$

Since one of the main observable is the t-dependence of the cross sections, I have looked at the π^0 -momentum for t=t_{min}, -0.5 GeV² and -1 GeV². In the case where t_{min} is lower than the requested t-value, then t_{min} is used y default. If t_{max} is greater than the requested t-value, then t_{max} is used y default.

Following the recommendations of the accelerator group, I have studied the configurations :

- Electron beam at 5 GeV and Proton beam at 41 GeV.
- Electron beam at 5 GeV and Proton beam at 100 GeV.
- Electron beam at 10 GeV and Proton beam at 100 GeV.
- Electron beam at 18 GeV and Proton beam at 275 GeV.

2 Electron kinematics

Here are the electron momentum/rapidity distributions as a function of Q^2 and x_B . I have required to have y>0.01 and y<0.95. I have assumed that the maximal scattering angle we can detect for the electron is 140 degrees. These plots have been produced without applying any cut on the π^0

FIGURE 1 – Rapidity (Left) and momentum (right) of scattered electron as function of Q^2 and \mathbf{x}_B .

3 π^0 kinematics

The tmin- π^0 is generated by having it collinear to the virtual photon exchanged between the proton and the electron. As Q² increases, the π^0 is more backward and its momentum slightly increases. The π^0 -momentum has a minimum as function of x_B for Q² less than 600 GeV² for the highest \sqrt{s} , and then becomes a monotonic increasing function of x_B for higher Q² values.

FIGURE 2 – π^0 -rapidity at t=t_{min} as function of Q^2 and x_B for the four beam configurations.

Taking into account the possible limitation of the calorimeter on the lowest photon energy at 1 GeV, I have applied a cut at 2 GeV on the π^0 momentum for three t-values which are t_{min} , -0.5 and -1 GeV².

For all \sqrt{s} -configuration, a significant phase space is lost at lower Q^2 and high x_B for t ranging from t_{min} to -1 GeV².

4 Recoil proton kinematics

For the moment, no constrain are applied on the proton side. Here are the proton kinematics in the same configurations as it was presented for the π^0 in the previous section.

5 Discussion

In order to determine the most suitable configurations for a GPD extraction with DVCS data, we must go further with pseudo-phenomenological analysis. To cover $x_B > 0.1$, it seems that the configuration 5×100 is more suitable than 5×41 because of 2 GeV cut on the π^0 -momentum. Although, because of the cut on y > 0.1, we are losing low Q^2 phase space for x_B above 0.2. Would we get enough satisfies at 5×100 compared to 5×41 for x_B above 0.2 despite the higher Q^2 -values? Or is there any technical reasons behind the cut y > 0.01? Otherwise we could even recover these low Q^2 -points.

Finally the region x_B from 10^{-3} to 10^{-2} for Q^2 smaller than 3 GeV² will not be accessible for DVCS studies because the π^0 cannot be studied. I remind that the π^0 cross sections increases with x_B and decreases with Q^2 .

FIGURE 3 – π^0 -momentum as function of Q^2 and x_B for t=t_{min}, -0.5 and -1 GeV².

FIGURE 4 – Proton rapidity at t=t_{min} as function of Q^2 and x_B for the four beam configurations.

FIGURE 5 – Proton momentum as function of Q^2 and x_B for $t=t_{min}$, -0.5 and -1 GeV².